首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Genomics》2021,113(6):3582-3598
Studies on cell atlas in marine invertebrates provide a better understanding of cell types, stem cell maintenance, and lineages of cell differentiation. To investigate the molecular features of various cell types in molluscan muscles, we performed single-cell RNA sequencing (scRNA-seq) to map cell types in scallop adductor muscles. We uncovered the cell type-specific features of 20 cell clusters defined by the expression of multiple specific molecular markers. These cell clusters are mainly classified into four broad classes, including mesenchymal stem cells, muscle cells, neurons, and haemolymph cells. In particular, we identified a diverse repertoire of neurons in the striated adductor muscle, but not in the smooth muscle. We further reconstructed the cell differentiation events using all the cell clusters by single-cell pseudotemporal trajectories. By integrating dual BrdU-PCNA immunodetection, neuron-specific staining and electron microscopy observation, we showed the spatial distribution of mesenchymal stem cells and neurons in striated adductor muscle of scallops. The present findings will not only be useful to address the cell type-specific gene expression profiles in scallop muscles, but also provide valuable resources for cross-species comparison of marine organisms.  相似文献   

2.
In our previous study, we identified an miRNA regulatory network involved in energy metabolism in porcine muscle. To better understand the involvement of miRNAs in cellular ATP production and energy metabolism, here we used C2C12 myoblasts, in which ATP levels increase during differentiation, to identify miRNAs modulating these processes. ATP level, miRNA and mRNA microarray expression profiles during C2C12 differentiation into myotubes were assessed. The results suggest 14 miRNAs (miR-423-3p, miR-17, miR-130b, miR-301a/b, miR-345, miR-15a, miR-16a, miR-128, miR-615, miR-1968, miR-1a/b, and miR-194) as cellular ATP regulators targeting genes involved in mitochondrial energy metabolism (Cox4i2, Cox6a2, Ndufb7, Ndufs4, Ndufs5, and Ndufv1) during C2C12 differentiation. Among these, miR-423-3p showed a high inverse correlation with increasing ATP levels. Besides having implications in promoting cell growth and cell cycle progression, its function in cellular ATP regulation is yet unknown. Therefore, miR-423-3p was selected and validated for the function together with its potential target, Cox6a2. Overexpression of miR-423-3p in C2C12 myogenic differentiation lead to decreased cellular ATP level and decreased expression of Cox6a2 compared to the negative control. These results suggest miR-423-3p as a novel regulator of ATP/energy metabolism by targeting Cox6a2.  相似文献   

3.
4.
Pacu (Piaractus mesopotamicus) is a Brazilian fish with a high economic value in pisciculture due to its rusticity and fast growth. Postnatal growth of skeletal muscle in fish occurs by hyperplasia and/or hypertrophy, processes that are dependent on the proliferation and differentiation of myoblasts. A class of small noncoding RNAs, known as microRNAs (miRNAs), represses the expression of target mRNAs, and many studies have demonstrated that miR-1, miR-133, miR-206 and miR-499 regulate different processes in skeletal muscle through the mRNA silencing of hdac4 (histone deacetylase 4), srf (serum response factor), pax7 (paired box 7) and sox6 ((sex determining region Y)-box 6), respectively. The aim of our work was to evaluate the expression of these miRNAs and their putative target mRNAs in fast- and slow-twitch skeletal muscle of pacu during growth. We used pacus in three different development stages: larval (aged 30 days), juvenile (aged 90 days and 150 days) and adult (aged 2 years). To complement our study, we also performed a pacu myoblast cell culture, which allowed us to investigate miRNA expression in the progression from myoblast proliferation to differentiation. Our results revealed an inverse correlation between the expression of the miRNAs and their target mRNAs, and there was evidence that miR-1 and miR-206 may regulate the differentiation of myoblasts, whereas miR-133 may regulate the proliferation of these cells. miR-499 was highly expressed in slow-twitch muscle, which suggests its involvement in the specification of the slow phenotype in muscle fibers. The expression of these miRNAs exhibited variations between different development stages and between distinct muscle twitch phenotypes. This work provides the first identification of miRNA expression profiles in pacu skeletal muscle and suggests an important role of these molecules in muscle growth and in the maintenance of the muscle phenotype.  相似文献   

5.
A wide range of phyla have been surveyed by SDS-PAGE for the new large proteins of the myofibril. Connectin (or titin) appears to be widely distributed. It is seen as a band of constant intensity and mobility in vertebrate striated muscle, but is absent from smooth muscle. It appears in more variable amounts, in a form of constant but greater mobility in many invertebrates: worms, molluscs (adductor but not gastropod feet), insects, a myriapod, and even in human blood platelets. Nebulin shares the same distribution in vertebrate muscles except for its notable absence in all heart muscle examined. It too is found in many invertebrates, not always with titin. It has been found in a worm, molluscs (adductor and gastropod feet), insects, crustaceans and an echinoderm. The mobility of nebulin varies within the vertebrates and more so between invertebrates (where, as with titin, it is greater). The isoforms of filamin in skeletal, cardiac, and smooth muscles of vertebrates are recorded. C-protein in rabbit muscles has four isoforms: white, alpha-red (X-protein), beta-red, and cardiac.  相似文献   

6.
7.
A class of small non-coding RNAs, the microRNAs (miRNAs), has been shown to be essential for the regulation of specific cell pathways, including skeletal muscle development, maintenance and homeostasis in vertebrates. However, the relative contribution of miRNAs for determining the red and white muscle cell phenotypes is far from being fully comprehended. To better characterize the role of miRNA in skeletal muscle cell biology, we investigated muscle-specific miRNA (myomiR) signatures in Nile tilapia fish. Quantitative (RT-qPCR) and spatial (FISH) expression analyses revealed a highly differential expression (forty-four-fold) of miR-499 in red skeletal muscle compared to white skeletal muscle, whereas the remaining known myomiRs were equally expressed in both muscle cell types. Detailed examination of the miR-499 targets through bioinformatics led us to the sox6 and rod1 genes, which had low expression in red muscle cells according to RT-qPCR, FISH, and protein immunofluorescence profiling experiments. Interestingly, we verified that the high expression of miR-499 perfectly correlates with a low expression of sox6 and rod1 target genes, as verified by a distinctive predominance of mRNA destabilization and protein translational decay to these genes, respectively. Through a genome-wide comparative analysis of SOX6 and ROD1 protein domains and through an in silico gene regulatory network, we also demonstrate that both proteins are essentially similar in vertebrate genomes, suggesting their gene regulatory network may also be widely conserved. Overall, our data shed light on the potential regulation of targets by miR-499 associated with the slow-twitch muscle fiber type phenotype. Additionally the results provide novel insights into the evolutionary dynamics of miRNA and target genes enrolled in a putative constrained molecular pathway in the skeletal muscle cells of vertebrates.  相似文献   

8.
MicroRNA-206: the skeletal muscle-specific myomiR   总被引:2,自引:0,他引:2  
  相似文献   

9.
microRNAs (miRNAs) are short non-coding RNAs that can mediate changes in gene expression and are required for the formation of skeletal muscle (myogenesis). With the goal of identifying novel miRNA biomarkers of muscle disease, we profiled miRNA expression using miRNA-seq in the gastrocnemius muscles of dystrophic mdx4cv mice. After identifying a down-regulation of the miR-30 family (miR-30a-5p, -30b, -30c, -30d and -30e) when compared to C57Bl/6 (WT) mice, we found that overexpression of miR-30 family miRNAs promotes differentiation, while inhibition restricts differentiation of myoblasts in vitro. Additionally, miR-30 family miRNAs are coordinately down-regulated during in vivo models of muscle injury (barium chloride injection) and muscle disuse atrophy (hindlimb suspension). Using bioinformatics tools and in vitro studies, we identified and validated Smarcd2, Snai2 and Tnrc6a as miR-30 family targets. Interestingly, we show that by targeting Tnrc6a, miR-30 family miRNAs negatively regulate the miRNA pathway and modulate both the activity of muscle-specific miR-206 and the levels of protein synthesis. These findings indicate that the miR-30 family may be an interesting biomarker of perturbed muscle homeostasis and muscle disease.  相似文献   

10.
11.
IGF-II is regulated by microRNA-125b in skeletal myogenesis   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) have emerged as key regulators of skeletal myogenesis, but our knowledge of the identity of the myogenic miRNAs and their targets remains limited. In this study, we report the identification and characterization of a novel myogenic miRNA, miR-125b. We find that the levels of miR-125b decline during myogenesis and that miR-125b negatively modulates myoblast differentiation in culture and muscle regeneration in mice. Our results identify IGF-II (insulin-like growth factor 2), a critical regulator of skeletal myogenesis, as a direct and major target of miR-125b in both myocytes and regenerating muscles, revealing for the first time an miRNA mechanism controlling IGF-II expression. In addition, we provide evidence suggesting that miR-125b biogenesis is negatively controlled by kinase-independent mammalian target of rapamycin (mTOR) signaling both in vitro and in vivo as a part of a dual mechanism by which mTOR regulates the production of IGF-II, a master switch governing the initiation of skeletal myogenesis.  相似文献   

12.
《Genomics》2020,112(1):32-44
The role of microRNA in gene regulation during developmental biology has been well depicted in several organisms. The present study was performed to investigate miRNAs role in the liver tissues during carbohydrate metabolism and their targets in the farmed carp rohu, Labeo rohita, which is economically important species in aquaculture. Using Illumina-HiSeq technology, a total of 22,612,316; 44,316,046 and 13,338,434 clean reads were obtained from three small-RNA libraries. We have identified 138 conserved and 161 novel miRNAs and studies revealed that miR-22, miR-122, miR-365, miR-200, and miR-146 are involved in carbohydrate metabolism. Further analysis depicted mature miRNA and their predicted target sites in genes that were involved in developmental biology, cellular activities, transportation, etc. This is the first report of the presence of miRNAs in liver tissue of rohu and their comparative profile linked with metabolism serves as a vital resource as a biomarker.  相似文献   

13.
Fructose is a highly lipogenic sugar that can alter energy metabolism and trigger metabolic disorders. In the current study, microRNAs (miRNAs) altered by a high-fructose diet were comprehensively explored to elucidate their significance in the pathogenesis of chronic metabolic disorders. miRNA expression profiling using small noncoding RNA sequencing revealed that 19 miRNAs were significantly upregulated and 26 were downregulated in the livers of high-fructose-fed mice compared to chow-fed mice. Computational prediction and functional analysis identified 10 miRNAs, miR-19b-3p, miR-101a-3p, miR-30a-5p, miR-223-3p, miR-378a-3p, miR-33-5p, miR-145a-3p, miR-128-3p, miR-125b-5p and miR-582-3p, assembled as a regulatory network to potentially target key genes in lipid and lipoprotein metabolism and insulin signaling at multiple levels. qRT-PCR analysis of their potential target genes [IRS-1, FOXO1, SREBP-1c/2, ChREBP, insulin-induced gene-2 (Insig-2), microsomal triglyceride transfer protein (MTTP) and apolipoprotein B (apoB)] demonstrated that fructose-induced alterations of miRNAs were also reflected in mRNA expression profiles of their target genes. Moreover, the miRNA profile induced by high-fructose diet differed from that induced by high-fat diet, indicating that miRNAs mediate distinct pathogenic mechanisms in dietary-induced metabolic disorders. This study presents a comprehensive analysis of a new set of hepatic miRNAs, which were altered by high-fructose diet and provides novel insights into the interaction between miRNAs and their target genes in the development of metabolic syndrome.  相似文献   

14.
15.
MicroRNAs (miRNA), small noncoding RNA molecules, may regulate protein synthesis, while resistance exercise training (RT) is an efficient strategy for stimulating muscle protein synthesis in vivo. However, RT increases muscle mass, with a very wide range of effectiveness in humans. We therefore determined the expression level of 21 abundant miRNAs to determine whether variation in these miRNAs was able to explain the variation in RT-induced gains in muscle mass. Vastus lateralis biopsies were obtained from the top and bottom ~20% of responders from 56 young men who undertook a 5 day/wk RT program for 12 wk. Training-induced muscle mass gain was determined by dual-energy X-ray absorptiometry, and fiber size was evaluated by histochemistry. The expression level of each miRNA was quantified using TaqMan-based quantitative PCR, with the analysis carried out in a blinded manner. Gene ontology and target gene profiling were used to predict the potential biological implications. Of the 21 mature miRNAs examined, 17 were stable during RT in both groups. However, miR-378, miR-29a, miR-26a, and miR-451 were differentially expressed between low and high responders. miR-378, miR-29a, and miR-26a were downregulated in low responders and unchanged in high responders, while miR-451 was upregulated only in low responders. Interestingly, the training-induced change in miR-378 abundance was positively correlated with muscle mass gains in vivo. Gene ontology analysis of the target gene list of miR-378, miR-29a, miR-26a, and miR-451, from the weighted cumulative context ranking methodology, indicated that miRNA changes in the low responders may be compensatory, reflecting a failure to "activate" growth and remodeling genes. We report, for the first time, that RT-induced hypertrophy in human skeletal muscle is associated with selected changes in miRNA abundance. Our analysis indicates that miRNAs may play a role in the phenotypic change and pronounced intergroup variation in the RT response.  相似文献   

16.

Background

In many eukaryotes, microRNAs (miRNAs) bind to complementary sites in the 3'-untranslated regions (3'-UTRs) of target messenger RNAs (mRNAs) and regulate their expression at the stage of translation. Recent studies have revealed that many miRNAs are evolutionarily conserved; however, the evolution of their target genes has yet to be systematically characterized. We sought to elucidate a set of conserved miRNA/target-gene pairs and to analyse the mechanism underlying miRNA-mediated gene regulation in the early stage of bilaterian evolution.

Results

Initially, we extracted five evolutionarily conserved miRNAs (let-7, miR-1, miR-124, miR-125/lin-4, and miR-34) among five diverse bilaterian animals. Subsequently, we designed a procedure to predict evolutionarily conserved miRNA/target-gene pairs by introducing orthologous gene information. As a result, we extracted 31 orthologous miRNA/target-gene pairs that were conserved among at least four diverse bilaterian animals; the prediction set showed prominent enrichment of orthologous miRNA/target-gene pairs that were verified experimentally. Approximately 84% of the target genes were regulated by three miRNAs (let-7, miR-1, and miR-124) and their function was classified mainly into the following categories: development, muscle formation, cell adhesion, and gene regulation. We used a reporter gene assay to experimentally verify the downregulation of six candidate pairs (out of six tested pairs) in HeLa cells.

Conclusions

The application of our new method enables the identification of 31 miRNA/target-gene pairs that were expected to have been regulated from the era of the common bilaterian ancestor. The downregulation of all six candidate pairs suggests that orthologous information contributed to the elucidation of the primordial set of genes that has been regulated by miRNAs; it was also an efficient tool for the elimination of false positives from the predicted candidates. In conclusion, our study identified potentially important miRNA-target pairs that were evolutionarily conserved throughout diverse bilaterian animals and that may provide new insights into early-stage miRNA functions.  相似文献   

17.
MicroRNAs (miRNAs) decrease the expression of specific target oncogenes or tumor suppressor genes and thereby play crucial roles in tumorigenesis and tumor growth. To date, the potential miRNAs regulating osteosarcoma growth and progression are not fully identified yet. In this study, the miRNA microarray assay and hierarchical clustering analysis were performed in human osteosarcoma samples. In comparison with normal human skeletal muscle, 43 miRNAs were significantly differentially expressed in human osteosarcomas (fold change ≥2 and p≤0.05). Among these miRNAs, miR-133a and miR-133b expression was decreased by 135 folds and 47 folds respectively and the decreased expression was confirmed in both frozen and paraffin-embedded osteosarcoma samples. The miR-133b precursor expression vector was then transfected into osteosarcoma cell lines U2-OS and MG-63, and the stable transfectants were selected by puromycin. We found that stable over-expression of miR-133b in osteosarcoma cell lines U2-OS and MG-63 inhibited cell proliferation, invasion and migration, and induced apoptosis. Further, over-expression of miR-133b decreased the expression of predicted target genes BCL2L2, MCL-1, IGF1R and MET, as well as the expression of phospho-Akt and FAK. This study provides a new insight into miRNAs dysregulation in osteosarcoma, and indicates that miR-133b may play as a tumor suppressor gene in osteosarcoma.  相似文献   

18.
19.
Anti-miRNA antisense inhibitors (AMOs) have demonstrated their utility in miRNA research and potential in miRNA therapy. Here we report a modified AMO approach in which multiple antisense units are engineered into a single unit that is able to simultaneously silence multiple-target miRNAs, the multiple-target AMO or MTg-AMO. We validated the technique with two separate MTg-AMOs: anti-miR-21/anti-miR-155/anti-miR-17-5p and anti-miR-1/anti-miR-133. We first verified the ability of the MTg-AMOs to antagonize the repressive actions of their target miRNAs using luciferase reporter activity assays and to specifically knock down the levels of their target miRNAs using real-time RT-PCR methods. We then used the MTg-AMO approach to identify several tumor suppressors—TGFBI, APC and BCL2L11 as the target genes for oncogenic miR-21, miR-155 and miR-17-5p, respectively, and two cardiac ion channel genes HCN2 (encoding a subunit of cardiac pacemaker channel) and CACNA1C (encoding the α-subunit of cardiac L-type Ca2+ channel) for the muscle-specific miR-1 and miR-133. We further demonstrated that the MTg-AMO targeting miR-21, miR-155 and miR-17-5p produced a greater inhibitory effect on cancer cell growth, compared with the regular single-target AMOs. Moreover, while using the regular single-target AMOs excluded HCN2 as a target gene for either miR-1 or miR-133, the MTg-AMO approach is able to reveal HCN2 as the target for both miR-1 and miR-133. Our findings suggest the MTg-AMO as an improved approach for miRNA target finding and for studying function of miRNAs. This approach may find its broad application for exploring biological processes involving multiple miRNAs and multiple genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号