首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Importin alpha is the nuclear import receptor that recognizes classical monopartite and bipartite nuclear localization signals (NLSs). The structure of mouse importin alpha has been determined at 2.5 A resolution. The structure shows a large C-terminal domain containing armadillo repeats, and a less structured N-terminal importin beta-binding domain containing an internal NLS bound to the NLS-binding site. The structure explains the regulatory switch between the cytoplasmic, high-affinity form, and the nuclear, low-affinity form for NLS binding of the nuclear import receptor predicted by the current models of nuclear import. Importin beta conceivably converts the low- to high-affinity form by binding to a site overlapping the autoinhibitory sequence. The structure also has implications for understanding NLS recognition, and the structures of armadillo and HEAT repeats.  相似文献   

2.
Androgen receptor (AR) belongs to the steroid receptor superfamily that regulates gene expression in a ligand-dependent fashion. AR is localized to the cytoplasm in the absence of androgen and translocates into the nuclei to activate gene expression in the presence of ligand. Regulation of AR nuclear import and export represents an essential step in androgen action. A nuclear localization signal (NLS) has been identified in the DNA-binding domain and hinge region of AR and other steroid receptors. Studies on nuclear export of AR, however, are limited, and what might be the underlying mechanism regulating the intracellular localization of steroid receptors is unclear. Our studies have identified a leptomycin B-insensitive nuclear export signal (NESAR) in the ligand-binding domain of AR, which is active in the absence of androgen and repressed upon ligand binding. Consistent with its androgen-sensitivity, NESAR contains amino acid residues in the immediate vicinity of the bound ligand. NESAR is necessary for AR nuclear export and is dominant over the NLS in the DNA-binding domain and hinge region in the absence of hormone. Our findings suggest that androgen can regulate NESAR and, subsequently, the NLS of the AR, providing a mechanism by which androgen regulates AR nuclear/cytoplasmic shuttling. Estrogen receptor alpha and mineralocorticoid receptor also contain functional NES, suggesting that this ligand-regulated NES is conserved among steroid receptors.  相似文献   

3.
4.
Abnormal p53 cellular localization has been considered to be one of the mechanisms that could inactivate p53 function. To understand the regulation of p53 cellular trafficking, we have previously identified two p53 domains involved in its localization. A basic domain, Lys(305)-Arg(306), is required for p53 nuclear import, and a carboxyl-terminal domain, namely the cytoplasmic sequestration domain (CSD) from residues 326-355, could block the nuclear import of Lys(305) or Arg(306) mutated p53. To characterize further the function of these two domains, we demonstrate in this report that the previously described major nuclear localization signal works together with Lys(305)-Arg(306) to form a bipartite and functional nuclear localization sequence (NLS) for p53 nuclear import. The CSD could block the binding of p53 to the NLS receptor, importin alpha, and reduce the efficiency of p53 nuclear import in MCF-7, H1299, and Saos-2 cells. The blocking effect of the CSD is not due to the enhancement of nuclear export or oligomerization of the p53. These results indicate that the CSD can regulate p53 nuclear import by controlling access of the NLS to importin alpha binding.  相似文献   

5.
p27(Kip1) (p27), a CDK inhibitor, migrates into the nucleus, where it controls cyclin-CDK complex activity for proper cell cycle progression. We report here that the classical bipartite-type basic amino-acid cluster and the two downstream amino acids of the C-terminal region of p27 function as a nuclear localization signal (NLS) for its full nuclear import activity. Importin alpha3 and alpha5, but not alpha1, transported p27 into the nucleus in conjunction with importin beta, as evidenced by an in vitro transport assay. It is known that Akt phosphorylates Thr 157 of p27 and this reduces the nuclear import activity of p27. Using a pull-down experiment, 14-3-3 was identified as the Thr157-phosphorylated p27NLS-binding protein. Although importin alpha5 bound to Thr157-phosphorylated p27NLS, 14-3-3 competed with importin alpha5 for binding to it. Thus, 14-3-3 sequestered phosphorylated p27NLS from importin alpha binding, resulting in cytoplasmic localization of NLS-phosphorylated p27. These findings indicate that 14-3-3 suppresses importin alpha/beta-dependent nuclear localization of Thr157-phosphorylated p27, suggesting implications for cell cycle disorder in Akt-activated cancer cells.  相似文献   

6.
Nuclear import of proteins containing a classical nuclear localization signal (NLS) involves NLS recognition by importin alpha, which associates with importin beta via the IBB domain. Other proteins, including parathyroid hormone-related protein (PTHrP), are imported into the nucleus by direct interaction with importin beta. We solved the crystal structure of a fragment of importin beta-1 (1-485) bound to the nonclassical NLS of PTHrP. The structure reveals a second extended cargo binding site on importin beta distinct from the IBB domain binding site. Using a permeabilized cell import assay we demonstrate that importin beta (1-485) can import PTHrP-coupled cargo in a Ran-dependent manner. We propose that this region contains a prototypical nuclear import receptor domain, which could have evolved into the modern importin beta superfamily.  相似文献   

7.
8.
The "classical" nuclear protein import pathway depends on importin alpha and importin beta. Importin alpha binds nuclear localization signal (NLS)-bearing proteins and functions as an adapter to access the importin beta-dependent import pathway. In humans, only one importin beta is known to interact with importin alpha, while six alpha importins have been described. Various experimental approaches provided evidence that several substrates are transported specifically by particular alpha importins. Whether the NLS is sufficient to mediate importin alpha specificity is unclear. To address this question, we exchanged the NLSs of two well-characterized import substrates, the seven-bladed propeller protein RCC1, preferentially transported into the nucleus by importin alpha3, and the less specifically imported substrate nucleoplasmin. In vitro binding studies and nuclear import assays revealed that both NLS and protein context contribute to the specificity of importin alpha binding and transport.  相似文献   

9.
The vertebrate glucocorticoid receptor (GR) is cytoplasmic without hormone and localizes to the nucleus after hormone binding. GR has two nuclear localization signals (NLS): NL1 is similar in sequence to the SV40 NLS; NL2 is poorly defined, residing in the ligand-binding domain. We found that GR displayed similar hormone-regulated compartmentalization in Saccharomyces cerevisiae and required the Sxm1 nuclear import receptor for NL2-mediated import. Two metazoan homologues of Sxm1, importin 7 and importin 8, bound both NL1 and NL2, whereas importin alpha selectively bound NL1. In an in vitro nuclear import assay, both importin 7 and the importin alpha-importin beta heterodimer could import a GR NL1 fragment. Under these conditions, full-length GR localized to nuclei in the presence but not absence of an unidentified component in cell extracts. Interestingly, importin 7, importin 8, and importin alpha bound GR even in the absence of hormone; thus, hormonal control of localization is exerted at a step downstream of import receptor binding.  相似文献   

10.
The nuclear import of the spliceosomal snRNPs U1, U2, U4 and U5, is dependent on the presence of a complex nuclear localization signal (NLS). The latter is composed of the 5'-2,2,7-terminal trimethylguanosine (m3G) cap structure of the U snRNA and the Sm core domain. Here, we describe the isolation and cDNA cloning of a 45 kDa protein, termed snurportin1, which interacts specifically with m3G-cap but not m7G-cap structures. Snurportin1 enhances the m3G-capdependent nuclear import of U snRNPs in both Xenopus laevis oocytes and digitonin-permeabilized HeLa cells, demonstrating that it functions as an snRNP-specific nuclear import receptor. Interestingly, solely the m3G-cap and not the Sm core NLS appears to be recognized by snurportin1, indicating that at least two distinct import receptors interact with the complex snRNP NLS. Snurportin1 represents a novel nuclear import receptor which contains an N-terminal importin beta binding (IBB) domain, essential for function, and a C-terminal m3G-cap-binding region with no structural similarity to the arm repeat domain of importin alpha.  相似文献   

11.
12.
13.
14.
Classical protein import, mediated by the binding of a classical nuclear localization signal (NLS) to the NLS receptor, karyopherin/importin alpha, is the most well studied nuclear transport process. Classical NLSs are either monopartite sequences that contain a single cluster of basic amino acids (Lys/Arg) or bipartite sequences that contain two clusters of basic residues separated by an unconserved linker region. We have created mutations in conserved residues in each of the three NLS-binding sites/regions in Saccharomyces cerevisiae karyopherin alpha (SRP1). For each mutant we have analyzed binding to both a monopartite and a bipartite NLS cargo in vitro. We have also expressed each karyopherin alpha mutant in vivo as the only cellular copy of the NLS receptor and examined the impact on cell growth and import of both monopartite and bipartite NLS-containing cargoes. Our results reveal the functional significance of specific residues within karyopherin alpha for NLS cargo binding. A karyopherin alpha variant with a mutation in the major NLS-binding site exhibits decreased binding to both monopartite and bipartite NLS cargoes, and this protein is not functional in vivo. However, we also find that a karyopherin alpha variant with a mutation in the minor NLS-binding site, which shows decreased binding only to bipartite NLS-containing cargoes, is also not functional in vivo. This suggests that the cell is dependent on the function of at least one bipartite NLS cargo that is imported into the nucleus by karyopherin alpha. Our experiments also reveal functional importance for the linker-binding region. This study provides insight into how changes in binding to cellular NLS sequences could impact cellular function. In addition, this work has led to the creation of conditional alleles of karyopherin alpha with well characterized defects in NLS binding that will be useful for identifying and characterizing novel NLS cargoes.  相似文献   

15.
The regulated process of protein import into the nucleus of a eukaryotic cell is mediated by specific nuclear localization signals (NLSs) that are recognized by protein import receptors. This study seeks to decipher the energetic details of NLS recognition by the receptor importin alpha through quantitative analysis of variant NLSs. The relative importance of each residue in two monopartite NLS sequences was determined using an alanine scanning approach. These measurements yield an energetic definition of a monopartite NLS sequence where a required lysine residue is followed by two other basic residues in the sequence K(K/R)X(K/R). In addition, the energetic contributions of the second basic cluster in a bipartite NLS ( approximately 3 kcal/mol) as well as the energy of inhibition of the importin alpha importin beta-binding domain ( approximately 3 kcal/mol) were also measured. These data allow the generation of an energetic scale of nuclear localization sequences based on a peptide's affinity for the importin alpha-importin beta complex. On this scale, a functional NLS has a binding constant of approximately 10 nm, whereas a nonfunctional NLS has a 100-fold weaker affinity of 1 microm. Further correlation between the current in vitro data and in vivo function will provide the foundation for a comprehensive quantitative model of protein import.  相似文献   

16.
Importin beta is a major mediator of import into the cell nucleus. Importin beta binds cargo molecules either directly or via two types of adapter molecules, importin alpha, for import of proteins with a classical nuclear localization signal (NLS), or snurportin 1, for import of m3G-capped U snRNPs. Both adapters have an NH2-terminal importin beta-binding domain for binding to, and import by, importin beta, and both need to be returned to the cytoplasm after having delivered their cargoes to the nucleus. We have shown previously that CAS mediates export of importin alpha. Here we show that snurportin 1 is exported by CRM1, the receptor for leucine-rich nuclear export signals (NESs). However, the interaction of CRM1 with snurportin 1 differs from that with previously characterized NESs. First, CRM1 binds snurportin 1 50-fold stronger than the Rev protein and 5,000-fold stronger than the minimum Rev activation domain. Second, snurportin 1 interacts with CRM1 not through a short peptide but rather via a large domain that allows regulation of affinity. Strikingly, snurportin 1 has a low affinity for CRM1 when bound to its m3G-capped import substrate, and a high affinity when substrate-free. This mechanism appears crucial for productive import cycles as it can ensure that CRM1 only exports snurportin 1 that has already released its import substrate in the nucleus.  相似文献   

17.
18.
19.
20.
Smad proteins are intracellular mediators of transforming growth factor-beta (TGF-beta) and related cytokines. Although ligand-induced nuclear translocation of Smad proteins is clearly established, the pathway mediating this import is yet to be determined. We previously identified a nuclear localization signal (NLS) in the N-terminal region of Smad 3, the major Smad protein involved in TGF-beta signal transduction. This basic motif (Lys(40-)Lys-Leu-Lys-Lys(44)), conserved among all the pathway-specific Smad proteins, is required for Smad 3 nuclear import in response to ligand. Here we studied the nuclear import pathway of Smad 3 mediated by this NLS. We demonstrate that the isolated Smad 3 MH1 domain displays significant specific binding to importin beta, which is diminished or eliminated by mutations in the NLS. Full-size Smad 3 exhibits weak but specific binding to importin beta, which is enhanced after phosphorylation by the type I TGF-beta receptor. In contrast, no interaction was observed between importin alpha and Smad 3 or its MH1 domain, indicating that nuclear translocation of Smad proteins may occur through direct binding to importin beta. We propose that activation of all of the pathway-specific Smad proteins (Smads 1, 2, 3, 5, 8, and 9) exposes the conserved NLS motif, which then binds directly to importin beta and triggers nuclear translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号