首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

Background

The complex societies of ants and other social insects rely on sophisticated chemical communication. Two families of small soluble proteins, the odorant binding and chemosensory proteins (OBPs and CSPs), are believed to be important in insect chemosensation. To better understand the role of these proteins in ant olfaction, we examined their evolution and expression across the ants using phylogenetics and sex- and tissue-specific RNA-seq.

Results

We find that subsets of both OBPs and CSPs are expressed in the antennae, contradicting the previous hypothesis that CSPs have replaced OBPs in ant olfaction. Both protein families have several highly conserved clades with a single ortholog in all eusocial hymenopterans, as well as clades with more dynamic evolution and many taxon-specific radiations. The dynamically evolving OBPs and CSPs have been hypothesized to function in chemical communication. Intriguingly, we find that seven members of the conserved clades are expressed specifically in the antennae of the clonal raider ant Cerapachys biroi, whereas only one dynamically evolving CSP is antenna specific. The orthologs of the conserved, antenna-specific C. biroi genes are also expressed in antennae of the ants Camponotus floridanus and Harpegnathos saltator, indicating that antenna-specific expression of these OBPs and CSPs is conserved across ants. Most members of the dynamically evolving clades in both protein families are expressed primarily in non-chemosensory tissues and thus likely do not fulfill chemosensory functions.

Conclusions

Our results identify candidate OBPs and CSPs that are likely involved in conserved aspects of ant olfaction, and suggest that OBPs and CSPs may not rapidly evolve to recognize species-specific signals.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-718) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are small soluble polypeptides that bind semiochemicals in the lymph of insect chemosensilla. In the genome of Anopheles gambiae, 66 genes encode OBPs and 8 encode CSPs. Here we monitored their expression through classical proteomics (2D gel-MS analysis) and a shotgun approach. The latter method proved much more sensitive and therefore more suitable for tiny biological samples as mosquitoes antennae and eggs. Females express a larger number and higher quantities of OBPs in their antennae than males (24 vs 19). OBP9 is the most abundant in the antennae of both sexes, as well as in larvae, pupae and eggs. Of the 8 CSPs, 4 were detected in antennae, while SAP3 was the only one expressed in larvae. Our proteomic results are in fairly good agreement with data of RNA expression reported in the literature, except for OBP4 and OBP5, that we could not identify in our analysis, nor could we detect in Western Blot experiments. The relatively limited number of soluble olfactory proteins expressed at relatively high levels in mosquitoes makes further studies on the coding of chemical messages at the OBP level more accessible, providing for few specific targets. Identification of such proteins in Anopheles gambiae might facilitate future studies on host finding behavior in this important disease vector.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号