首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atherosclerosis is a chronic, inflammatory disorder characterized by the deposition of excess lipids in the arterial intima. The formation of macrophage-derived foam cells in a plaque is a hallmark of the development of atherosclerosis. Lipid homeostasis, especially cholesterol homeostasis, plays a crucial role during the formation of foam cells. Recently, lipid droplet-associated proteins, including PAT and CIDE family proteins, have been shown to control the development of atherosclerosis by regulating the formation, growth, stabilization and functions of lipid droplets in macrophage-derived foam cells. This review focuses on the potential mechanisms of formation of macrophage-derived foam cells in atherosclerosis with particular emphasis on the role of lipid homeostasis and lipid droplet-associated proteins. Understanding the process of foam cell formation will aid in the future discovery of novel therapeutic interventions for atherosclerosis.  相似文献   

2.
The Th1-derived cytokine gamma interferon, IFN-gamma, is present within the microenvironment of an atheromatous lesion and likely contributes to lesion progression through macrophage activation. While the inflammatory effects of IFN-gamma are well known, the role of this cytokine in cholesterol metabolism in macrophage derived foam cells is unclear. In the present study, the incubation of foam cells with IFN-gamma resulted in the reduction of HDL(3)-mediated cholesterol efflux. The decrease in cholesterol efflux was not observed with other macrophage-activating factors as colony-stimulating factors failed to demonstrate a similar effect. The reduction in cholesterol efflux was independent of apoE synthesis or SR-BI expression and was associated with a redistribution of intracellular cholesterol with an increase in cholesteryl ester accumulation. The increase in the esterified pool, primarily in cholesterol eicosapentadenoate, docosapentaenoate, arachidonate, and linoleate was associated with a 2-fold increase in acyl-CoA:cholesterol-O-acyltransferase, ACAT, activity and message without any change in neutral cholesteryl ester hydrolase activity. While CD36 message was reduced in IFN-gamma-treated foam cells, the ability to reverse the decrease in efflux by the ACAT inhibitor A58035 in a dose-dependent manner suggests that the IFN-gamma effect on efflux is primarily through the modulation of ACAT expression. Therefore, in addition to its inflammatory effects, IFN-gamma can contribute to the progression of an atherosclerotic lesion by altering the pathway of intracellular cholesterol trafficking in macrophage derived foam cells.  相似文献   

3.
We and others have shown that foam cell formation initiated by exposing macrophages to oxidized low density lipoprotein (oxLDL) triggers the differential expression of a number of proteins. Specifically, our experiments have identified peroxiredoxin I (Prx I) as one of these up-regulated proteins. The peroxiredoxins, a family of peroxidases initially described for their antioxidant capability, have generated recent interest for their potential to regulate signaling pathways. Those studies, however, have not examined peroxiredoxin for a potential dual functionality as both cytoprotective antioxidant and signal modulator in a single, oxidant-stressed system. In this report, we examine the up-regulation of Prx I in macrophages in response to oxLDL exposure and its ability to function as both antioxidant enzyme and regulator of p38 MAPK activation. As an antioxidant, induction of Prx I expression led to improved cell survival following treatment with oxLDL or tert-butyl hydroperoxide. The improved survival coincided with a decrease in measurable reactive oxygen species (ROS), and both the increased survival and reduced ROS were reversed by Prx I small interfering RNA transfection. Additionally, our data show that activation of p38 MAPK in oxLDL-treated macrophages was dependent on the up-regulation of Prx I. Reduction of Prx I expression by small interfering RNA transfection resulted in a significant decrease in p38 MAPK activation, whereas the up-regulation of Prx I expression with either oxLDL or ethoxyquin led to increased p38 MAPK activation. These results are consistent with multiple roles for Prx I in macrophage-derived foam cells that include functionality as both an antioxidant and a regulator of oxidant-sensitive signal transduction.  相似文献   

4.
To test the hypothesis that LDL lacking of initial oxidation may also anticipate an essential role in the progression for atherosclerotic lesions, we studied the in vitro effect of foam cells induced by low density lipoprotein (LDL), oxidized (ox)-LDL or acetyl-LDL on smooth muscle cell (SMC) proliferation. Intraperitoneal macrophages collected from ICR mice were incubated with buffered saline LDL, ox-LDL or acetyl-LDL to induce foam cell formation. Porcine aortas with atherosclerotic lesions were collected from 5 pigs fed high cholesterol diets. The results indicate that foam cells induced by ox-LDL and acetyl-LDL, but not by LDL, promoted SMC proliferation. SMC proliferation was also increased by ruptured, ox-LDL- and acetyl-LDL- induced foam cells. Immunohistochemically, epitopes of the LDL, ox-LDL, and malondialdelyde (MDA)-LDL were present in atherosclerotic lesions, but the acetyl epitope was not. We suggest that foam cells, whether induced by the oxidized or acetyl or acetyl (unoxidized) form, play an essential role in the pathogenesis of atherosclerosis by stimulating SMC proliferation.  相似文献   

5.
Atherosclerosis is an age-associated disease; however, diabetic atherosclerosis has higher severity beyond age range for accumulative premature senescent cells in diabetes. Recent findings suggest that rutin, a flavonoid, has potential benefits for diabetic individuals. This study was designed to evaluate the effects of rutin on premature senescence and atherosclerosis. Apolipoprotein E knockout mice exhibiting insulin resistance after 6 weeks of high-fat diet were administered with a low dose of streptozotocin (STZ) to induce diabetes. After 8 weeks of STZ administration, rutin (40 mg/kg/d) was supplemented by gavage for the last 6 weeks. We evaluated the prosperity of the plaque and diabetes using serial echocardiography, histopathologic and metabolite analysis. Premature senescence induced by hydrogen peroxide in primary vascular smooth muscle cells (VSMCs) was used to analyze the underlying mechanism. Mice with diabetes showed more severe plaque burden on aortic arteries and less smooth muscle cells but larger senescent cell ratio in plaque compared with mice with control diets. Rutin significantly improves glucose and lipid metabolic disturbance in diabetes. Moreover, rutin decreased the atherosclerotic burden and senescent cell number and increased the VSMC ratio in aortic root plaque. In vitro, we demonstrated that rutin ameliorated premature senescence induced by oxidative stress, and the protective function may be mediated by inhibiting oxidative stress and protecting telomere. Rutin administration attenuates atherosclerosis burden and stabilizes plaque by improving metabolic disturbance and alleviating premature senescence of VSMCs. Inhibition of VSMCs premature senescence with rutin may be an effective therapy for diabetic atherosclerosis.  相似文献   

6.
7.
Ilex paraguariensis aqueous extract (mate) is an antioxidant-rich beverage widely consumed in South American countries. Here we questioned whether mate could reduce the progression of atherosclerosis in 1% cholesterol-fed rabbits. New Zealand White male rabbits (n = 32) were divided into four groups: control (C, n = 5), control-mate (CM, n = 5), hypercholesterolemic (HC, n = 11) and hypercholesterolemic-mate (HCM, n = 11). The daily water and mate extract consumption was approximately 400 ml. After 2 months of treatment, mate intake did not change the lipid profile or hepatic cholesterol content of control or hypercholesterolemic rabbits (p < 0.05). However, the atherosclerotic lesion area was considerably smaller in the hypercholesterolemic-mate group (HCM, 35.4% vs. HC, 60.1%; p < 0.05). In addition, the aortic cholesterol content was around half that of the HC group (HCM, 36.8 vs. HC, 73.9 microg/mg of protein, p < 0.05). In spite of this, the thiobarbituric acid-reactive substances (TBARS) in the atherosclerotic aorta, liver and serum, and the activity of the antioxidant enzymes in liver and aorta did not differ among groups (p > 0.05). The results showed that Ilex paraguariensis extract can inhibit the progression of atherosclerosis in cholesterol-fed rabbits, although it did not decrease the serum cholesterol or aortic TBARS and antioxidant enzymes.  相似文献   

8.
9.
Mast cells are important cells of the immune system and are recognized as participants in the pathogenesis of atherosclerosis. In this study, we evaluated the role of mast cells on the progression of atherosclerosis and hepatic steatosis using the apolipoprotein E-deficient (ApoE(-/-)) and ApoE(-/-)/mast cell-deficient (Kit(W-sh/W-sh)) mouse models maintained on a high-fat diet. The en face analyses of aortas showed a marked reduction in plaque coverage in ApoE(-/-)/Kit(W-sh/W-sh) compared with ApoE(-/-) after a 6-mo regimen with no significant change noted after 3 mo. Quantification of intima/media thickness on hematoxylin and eosin-stained histological cross sections of the aortic arch revealed no significant difference between ApoE(-/-) and ApoE(-/-)/Kit(W-sh/W-sh) mice. The high-fat regimen did not induce atherosclerosis in either Kit(W-sh/W-sh) or wild-type mice. Mast cells with indications of degranulation were seen only in the aortic walls and heart of ApoE(-/-) mice. Compared with ApoE(-/-) mice, the serum levels of total cholesterol, low-density lipoprotein and high-density lipoprotein were decreased by 50% in ApoE(-/-)/Kit(W-sh/W-sh) mice, whereas no appreciable differences were noted in serum levels of triglycerides or very low density lipoprotein. ApoE(-/-)/Kit(W-sh/W-sh) mice developed significantly less hepatic steatosis than ApoE(-/-) mice after the 3-mo regimen. The analysis of Th1/Th2/Th17 cytokine profile in the sera revealed significant reduction of interleukin (IL)-6 and IL-10 in ApoE(-/-)/Kit(W-sh/W-sh) mice compared with ApoE(-/-) mice. The assessment of systemic generation of thromboxane A(2) (TXA(2)) and prostaglandin I(2) (PGI(2)) revealed significant decrease in the production of PGI(2) in ApoE(-/-)/Kit(W-sh/W-sh) mice with no change in TXA(2). The decrease in PGI(2) production was found to be associated with reduced levels of cyclooxygenase-2 mRNA in the aortic tissues. A significant reduction in T-lymphocytes and macrophages was noted in the atheromas of the ApoE(-/-)/Kit(W-sh/W-sh) mice. These results demonstrate the direct involvement of mast cells in the progression of atherosclerosis and hepatic steatosis.  相似文献   

10.
Yang PY  Rui YC 《Life sciences》2003,74(4):471-480
Macrophage-derived foam cells seem to play an important role during inflammatory response of atherosclerosis, in which the overexpression of intercellular adhesion molecule-1 (ICAM-1) and vascular endothelial growth factor (VEGF) are associated with the early and later pathological changes in foam cell formation. In this study, we investigated the expression kinetics of ICAM-1 and VEGF in macrophage-derived foam cells. The foam cell model was established through incubating the human monocyte line (U937 cells) with oxidized-low density lipoprotein (ox-LDL). Up-regulated expressions of ICAM-1 and VEGF were analyzed in protein and mRNA levels in U937 foam cells by flow cytometry, ELISA, and Northern blot. Kinetic studies showed the deferent kinds of expression curves in dose response and time course. The expression dose-kinetics demonstrated that the ICAM-1 showed the peak expression induced by ox-LDL 50 mg/L, while VEGF levels increased in a dose-dependent manner with the maximum level induced by ox-LDL 200 mg/L. Time-kinetic studies revealed that the ICAM-1 levels showed the peak expression in 12 h while VEGF expression increased in a time-dependent manner with the maximum level in 48 h. These results proved that both ICAM-1 and VEGF expressions were enhanced in the macrophage-derived foam cells, but ICAM-1 expression increased earlier than the up-regulation of VEGF; low dose of ox-LDL mainly up regulated ICAM-1 expression, while high dose mainly increased the VEGF expression.  相似文献   

11.
Macrophage foam cells, a major component of the atherosclerotic lesion, have vital roles in the development of atherosclerosis. Lipoautophagy, a type of autophagy characterized by selective delivery of lipid droplet for lysosomal degradation, may impact atherosclerosis by regulating macrophage foam cell formation. Previously, we reported that programmed cell death 4 (PDCD4), a tumor suppressor, negatively regulated autophagy in tumor cells. However, its roles in macrophage lipoautophagy, foam cell formation and atherosclerosis remain to be established. Here we found that Pdcd4 deficiency clearly improved oxidized low-density lipoproteins-impaired autophagy efflux, promoted autophagy-mediated lipid breakdown in murine macrophages and thus prevented macrophage conversion into foam cells. Importantly, Pdcd4 deficiency in mice significantly upregulated macrophage autophagy in local plaques along with attenuated lipid accumulation and atherosclerotic lesions in high-fat-fed Apolipoprotein E knockout mice. Bone marrow transplantation experiment demonstrated that PDCD4-mediated autophagy in hematopoietic cells contributed to the development of atherosclerosis. These results indicate that endogenous PDCD4 promotes for macrophage foam cell formation and atherosclerosis development via inhibiting autophagy and provides new insights into atherogenesis, suggesting that promoting macrophage autophagy through downregulating PDCD4 expression may be beneficial for treating atherosclerosis.Atherosclerosis is a lipid dysfunction-derived chronic inflammatory process in large and medium arterial wall.1 Macrophage foam cell, as a major component in the lesion of atherosclerosis, has vital role in the development of atherosclerosis. In the initial step of atherosclerotic development, circulating monocytes migrate into arterial wall via dysfunctional endothelial cells and differentiate into macrophages.2, 3, 4 The infiltrated macrophages ingest and digest oxidized low-density lipoprotein (ox-LDL), and then transport lipid out of vascular wall.5 However, macrophage with overloaded lipids stored in the form of lipid droplets (LDs) will transform into foam cells. Macrophage foam cell formation could promote the development of atherosclerosis.6 Thus, decreasing the formation of macrophage foam cell would be an attractive strategy to reverse plaque lipid buildup.7The macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved and well-controlled cellular catabolic process. During the process, cytoplasmic components are sequestered in double-membrane vesicles (which is called autophagosome) and degraded by fusion with lysosomal compartments (autophagolysosome) for recycling application.8 The process of autophagy is regulated by several autophagy-related genes (ATGs) encoded proteins, such as ATG5, ATG6 (also known as BECN1), ATG8 (also known as microtubule-associated protein 1 light chain 3, LC3) and ATG12. ATG5 is involved in the early stage of autophagosome formation. ATG5 is conjugated with ATG12 and ATG16L to form ATG12–ATG5–ATG16L complex, which contributes to the elongation and closure of the autophagosomes in the generation of lipidated forms of LC3 family proteins.9 Lipoautophagy, a type of autophagy that selectively delivers LDs for lysosomal degradation,10 regulates lipid metabolism and is involved in the process of atherosclerosis.11, 12, 13, 14 In advanced atherosclerosis, macrophage autophagy becomes dysfunctional. However, the basic autophagy deficiency in macrophage by specific Atg5 knockout accelerates atherosclerotic plaques in high-fat-fed ldlr−/− mice via promoting oxidative stress, plaque necrosis12 or inflammasome hyperactivation.13 More interestingly, autophagy can enhance brokendown of lipid in LD, cholesterol efflux from macrophage foam cells and further inhibit atherogenisis.14 Stent-based delivery of everolimus (mTOR inhibitor) in atherosclerotic plaques of cholesterol-fed rabbits leads to a marked reduction of macrophages via autophagic cell death.15 Therefore, regulating the level of macrophage autophagy and macrophage conversion into foam cells would be a potential target for preventing the atherosclerotic plaques formation.16Programmed cell death 4 (PDCD4), an inhibitor of protein translation, inhibits translation initiation via binding to the translation initiation factor eIF4A or translation elongation by direct or indirectly binding to the coding region of specific RNAs.17, 18 Accumulated evidence has demonstrated PDCD4 as a tumor suppressor.19 PDCD4 can inhibit promotion and progression of tumors, such as lung cancer,20 hepatocellular carcinoma cells,21 colon cancer,22 ovarian cancer23 and glioma.24 In addition, it has been reported that PDCD4 is also involved in the development of inflammatory diseases.25, 26, 27, 28, 29, 30 For example, Pdcd4-deficient mice are resistant to experimental allergic encephalitis,25 LPS-induced endotoxin shock26 and type-1 diabetes.27 In addition, Pdcd4-deficient mice are sensitive to LPS/D-galactosamine-induced acute liver injury.28 Recently, we reported that Pdcd4 deficiency attenuated adipocyte foam cells, diet-induced obesity, obesity-associated inflammation and insulin resistance,29 and increased IL-10 expression by macrophages that partly involved in atherosclerosis in hyperlipidemic mice,30 suggesting that PDCD4 may be involved in the metabolism-related diseases. Furthermore, we found that PDCD4 negatively regulated autophagy by inhibiting ATG5 expression in tumor cells.31 However, its role in macrophage lipoautophagy and foam formation, and association with atherosclerosis remain to be investigated.In the present study, we found that Pdcd4 deficiency improved ox-LDL-impaired autophagy efflux in murine macrophage and subsequently attenuated macrophage conversion into foam cells in an autophagy-dependent manner and further attenuated the formation of atherosclerotic lesions in hyperlipidemia mice. These results indicate that PDCD4 is critical for macrophage foam cell formation in atherosclerosis development and provides new insights into atherogenesis, and potential therapeutic avenues to treat atherosclerosis-associated diseases.  相似文献   

12.
Multiple sclerosis (MS) is a T-cell mediated autoimmune disease of the CNS, possessing both immune and neurodegenerative events that lead to disability. Adoptive transfer (AT) of myelin basic protein (MBP)-specific T cells into naïve female SJL/J mice results in a relapsing–remitting (RR) form of experimental autoimmune encephalomyelitis (EAE). Blocking the mechanisms by which MBP-specific T cells are activated before AT may help characterize the immune arm of MS and offer novel targets for therapy. One such target is calpain, which is involved in activation of T cells, migration of immune cells into the CNS, degradation of axonal and myelin proteins, and neuronal apoptosis. Thus, the hypothesis that inhibiting calpain in MBP-specific T cells would diminish their encephalitogenicity in RR-EAE mice was tested. Incubating MBP-specific T cells with the calpain inhibitor SJA6017 before AT markedly suppressed the ability of these T cells to induce clinical symptoms of RR-EAE. These reductions correlated with decreases in demyelination, inflammation, axonal damage, and loss of oligodendrocytes and neurons. Also, calpain : calpastatin ratio, production of truncated Bid, and Bax : Bcl-2 ratio, and activities of calpain and caspases, and internucleosomal DNA fragmentation were attenuated. Thus, these data suggest calpain as a promising target for treating EAE and MS.  相似文献   

13.
Wang  Chao  Yang  Wei  Liang  Xiaofei  Song  Wei  Lin  Jing  Sun  Yan  Guan  Xiuru 《Molecular and cellular biochemistry》2020,474(1-2):135-146
Molecular and Cellular Biochemistry - Macrophage-derived foam cells formation is the initial stage of atherosclerosis, and lipid-laden macrophage accumulation is also considered as the symbol of...  相似文献   

14.
15.
In recent years, attention has been focused on the anti-cancer properties of pure components, an important role in the prevention of disease. Andrographolide (Andro), the major constituent of Andrographis paniculata (Burm. F.) Nees plant, is implicated towards its pharmacological activity. To investigate the mechanism basis for the anti-tumor properties of Andro, Andro was used to examine its effect on cell-cycle progression in human colorectal carcinoma Lovo cells. The data from cell growth experiment showed that Andro exhibited the anti-proliferation effect on Lovo cells in a time- and dose-dependent manner. This event was accompanied the arrest of the cells at the G1-S phase by Andro at the tested concentrations of 0-30 microM. Cellular uptake of Andro and Andro was confirmed by capillary electrophoresis analysis and the intracellular accumulation of Andro (0.61+/-0.07 microM/mg protein) was observed when treatment of Lovo cells with Andro for 12h. In addition, an accumulation of the cells in G1 phase (15% increase for 10 microM of Andro) was observed as well as by the association with a marked decrease in the protein expression of Cyclin A, Cyclin D1, Cdk2 and Cdk4. Andro also inducted the content of Cdk inhibitor p21 and p16, and the phosphorylation of p53. Further immunoprecipitation studies found that, in response to the treatment, the formation of Cyclin D1/Cdk4 and Cyclin A/Cdk2 complexes had declined, preventing the phosphorylation of Rb and the subsequent dissociation of Rb/E2F complex. These results suggested Andro can inhibit Lovo cell growth by G1-S phase arrest, and was exerted by inducing the expression of p53, p21 and p16 that, in turn, repressed the activity of Cyclin D1/Cdk4 and/or Cyclin A/Cdk2, as well as Rb phosphorylation.  相似文献   

16.
17.
In macrophages, the accumulation of cholesteryl esters synthesized by acyl-coenzyme A: cholesterol acyltransferase 1(ACAT1) plays a crucial role in foam cell formation, a hallmark of early atherosclerotic lesions. It is suggested that Chlamydia pneumoniae (C. pneumoniae) induces foam cell formation. However, the mechanism of foam cell formation induced by C. pneumoniae has not been fully elucidated. In this study, we found that C. pneumoniae increased the expression of acyl-coenzyme A: cholesterol acyltransferase 1(ACAT1) mRNA and protein in a dose-dependent manner in THP-1-derived macrophages exposed to low density lipoprotein (LDL). In addition, C. pneumoniae dose-dependently suppressed the expression of peroxisome proliferator-activated receptor gamma (PPAR γ) mRNA and protein. Rosiglitazone, a specific PPAR γ agonist, not only dose-dependently alleviated the down-regulation of PPAR γ expression by C. pneumoniae infection, but also dose-dependently inhibited the C. pneumoniae-induced ACAT1 expression. Furthermore, higher doses of rosiglitazone (10 and 20 μM) suppressed the C. pneumoniae-induced foam cell formation from morphological (Oil red O staining) and biochemical (zymochemistry method) criteria. These results first demonstrate that C. pneumoniae induces macrophage-derived foam cell formation by up-regulating ACAT1 expression via PPAR γ-dependent pathway, which may contribute to its pro-atherogenic properties.  相似文献   

18.
The regulation of ATP-binding cassette transporter 1 (ABC-1) expression by cytokines present within the microenvironment of the atheroma may play an important role in determining the impact of reverse cholesterol transport on the atherosclerotic lesion. We recently reported that the macrophage-activating cytokine interferon (IFN)-gamma inhibited both cholesterol efflux and ABC-1 expression. In the present study, we investigated the effects of transforming growth factor (TGF)-beta, a cytokine also apparent within the atheroma, on cholesterol efflux, ABC-1 expression, and its ability to antagonize the inhibitory effects of IFN-gamma. TGF-beta significantly increased cholesterol efflux in macrophage-derived foam cells from apolipoprotein E (apoE) knockout mice, with maximal effects apparent at 300 pg/ml. The increases in efflux occurred without any effect on the passive diffusion component of efflux mediated by beta-cyclodextrin. Furthermore, the increase in cholesterol efflux occurred without any changes in free or esterified cholesterol pools and was consistent with an increase in both ABC-1 message and protein. Finally, TGF-beta was also demonstrated to inhibit the IFN-gamma-mediated down-regulation of ABC-1. These results further demonstrate the importance of cytokine cross-talk to impact the process of reverse cholesterol transport through a multitude of processes including the regulation of ABC-1.  相似文献   

19.
It is suggested that cholesterol efflux mediated by ATP binding cassette transporter A1 (ABCA1) plays an important role in anti-atherogenesis. However, the effects of inflammatory cytokines on ABCA1 expression and cholesterol accumulation in foam cells are little known. This study investigates the effects of tumour necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) on ABCA1 expression and cholesterol content in THP-1 macrophage-derived foam cells. ABCA1mRNA and protein levels were determined by RT-PCR and Western blot, respectively. The total cholesterol content in THP-1 macrophage-derived foam cells was detected by the zymochemistry method. Results revealed that TNF-alpha could increase cholesterol content by down-regulating ABCA1 expression in a time-dependent manner in THP-1 macrophage-derived foam cells, which may contribute to its pro-atherosclerotic effect. In addition IL-10 time-dependently decreased cholesterol accumulation by up-regulating ABCA1 expression and inhibited the down-regulation of ABCA1 by TNF-alpha in THP-1 macrophage-derived foam cells, which may be one of the mechanisms of IL-10 contributing to its anti-atherosclerotic action.  相似文献   

20.
Yang L  Yang JB  Chen J  Yu GY  Zhou P  Lei L  Wang ZZ  Cy Chang C  Yang XY  Chang TY  Li BL 《Cell research》2004,14(4):315-323
In macrophages, the accumulation of cholesteryl esters synthesized by the activated acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1) results in the foam cell formation, a hallmark of early atherosclerotic lesions. In this study, with the treatment of a glucocorticoid hormone dexamethasone (Dex), lipid staining results clearly showed the large accumulation of lipid droplets containing cholesteryl esters in THP-1-derived macrophages exposed to lower concentration of the oxidized low-density lipoprotein (ox-LDL). More notably, when treated together with specific anti-ACAT inhibitors, the abundant cholesteryl ester accumulation was markedly diminished in THP-1-derived macrophages, confirming that ACAT is the key enzyme responsible for intracellular cholesteryl ester synthesis. RT-PCR and Western blot results indicated that Dex caused up-regulation of human ACAT1 expression at both the mRNA and protein levels in THP-1 and THP-l-derived macrophages. The luciferase activity assay demonstrated that Dex could enhance the activity of human ACAT1 gene P1 promoter, a major factor leading to the ACAT1 activation, in a cell-specific manner. Further experimental evidences showed that a glucocorticoid response element (GRE) located within human ACAT1 gene P1 promoter to response to the elevation of human ACAT1 gene expression by Dex could be functionally bound with glucocorticoid receptor (GR) proteins. These data supported the hypothesis that the clinical treatment with Dex, which increased the incidence of atherosclerosis, may in part due to enhancing the ACAT1 expression to promote the accumulation of cholesteryl esters during the macrophage-derived foam cell formation, an early stage of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号