首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The availability of specific markers expressed in different regions of the developing nervous system provides a useful tool to illuminate their development, regulation and function. We have identified by expression profiling a putative non-coding RNA, Rmst, that exhibits prominent expression in the midbrain floor plate region, the isthmus and the roof plate of the anterior neural tube. At the developmental stage when the ventral dopaminergic neuron territory is being established, Rmst expression appears to be restricted to the presumptive dopaminergic neurons of the ventral tegmental area that lies close to the ventral midline. Thus this study presents Rmst as a novel marker for the developing dopaminergic neurons in the mesencephalic floor plate as well as a marker for the dorsal midline cells of the anterior neural tube and the isthmic organizer.  相似文献   

2.
Dopaminergic neurons located in the ventral midbrain control movement, emotional behavior, and reward mechanisms1-3. The dysfunction of ventral midbrain dopaminergic neurons is implicated in Parkinson''s disease, Schizophrenia, depression, and dementia1-5. Thus, studying the regulation of midbrain dopaminergic neuron differentiation could not only provide important insight into mechanisms regulating midbrain development and neural progenitor fate specification, but also help develop new therapeutic strategies for treating a variety of human neurological disorders.Dopaminergic neurons differentiate from neural progenitors lining the ventricular zone of embryonic ventral midbrain. The development of neural progenitors is controlled by gene expression programs6,7. Here we report techniques utilizing electroporation to express genes specifically in the midbrain of Hamburger Hamilton (HH) stage 11 (thirteen somites, 42 hours) chick embryos8,9. The external development of chick embryos allows for convenient experimental manipulations at specific embryonic stages, with the effects determined at later developmental time points10-13. Chick embryonic neural tubes earlier than HH stage 13 (nineteen somites, 48 hours) consist of multipotent neural progenitors that are capable of differentiating into distinct cell types of the nervous system. The pCAG vector, which contains both a CMV promoter and a chick β-actin enhancer, allows for robust expression of Flag or other epitope-tagged constructs in embryonic chick neural tubes14. In this report, we emphasize special measures to achieve regionally restricted gene expression in embryonic midbrain dopaminergic neuron progenitors, including how to inject DNA constructs specifically into the embryonic midbrain region and how to pinpoint electroporation with small custom-made electrodes. Analyzing chick midbrain at later stages provides an excellent in vivo system for plasmid vector-mediated gain-of-function and loss-of-function studies of midbrain development. Modification of the experimental system may extend the assay to other parts of the nervous system for performing fate mapping analysis and for investigating the regulation of gene expression.  相似文献   

3.
Sonic hedgehog (Shh) is well known as the molecule responsible for the induction and maintenance of ventral neural tube structures. Recent data have shown that ventral neuronal populations react differentially to the amount of this morphogen not only in the spinal cord, but also in more rostral parts of the brain, like the midbrain. A dorsal expansion in the Shh expression domain modifies the differentiation program in this territory. The lack of Shh produces alterations in the development of this area as well. Here, for the first time, we analyze in detail the development of the different mesencephalic basal nuclei in the absence of Shh. We report that the oculomotor complex is lost, the dopaminergic populations are strongly affected but the red nucleus is maintained. These results point out that not all the midbrain neuronal populations are dependent on Shh for their maintenance, as previously thought. Based on our results and recently published data, we suggest the existence of a specific genetic pathway for the specification of the mesencephalic red nucleus. Foxa2 could be the candidate gene that might control this genetic pathway.  相似文献   

4.
5.
6.
7.
Specific neuronal differentiation of Embryonic Stem Cells (ESCs) depends on their capacity to interpret environmental cues. At present, it is not clear at which stage of differentiation ESCs become competent to produce multiple neuronal lineages in response to the niche of the embryonic brain. To unfold the developmental potential of ESC-derived precursors, we transplanted these cells into the embryonic midbrain explants, where neurogenesis occurs as in normal midbrain development. Using this experimental design, we show that the transition from ESCs to Embryoid Body (EB) precursors is necessary to differentiate into Lmx1a+/Ptx3+/TH+ dopaminergic neurons around the ventral midline of the midbrain. In addition, EB cells placed at other dorsal-ventral levels of the midbrain give rise to Nkx6.1+ red nucleus (RN) neurons, Nkx2.2+ ventral interneurons and Pax7+ dorsal neurons at the correct positions. Notably, differentiation of ESCs into Neural Precursor Cells (NPCs) prior to transplantation markedly reduces specification at the Lmx1a, Nkx6.1 and Pax7 expression domains, without affecting neuronal differentiation. Finally, exposure to Fgf8 and Shh in vitro promotes commitment of some ESC-derived NPCs to differentiate into putative Lmx1a+ dopaminergic neurons in the midbrain. Our data demonstrate intrinsic developmental potential differences among ESC-derived precursor populations.  相似文献   

8.
Contemporary study of molecular patterning in the vertebrate midbrain is handicapped by the lack of a complete topological map of the diverse neuronal complexes differentiated in this domain. The relatively less deformed reptilian midbrain was chosen for resolving this fundamental issue in a way that can be extrapolated to other tetrapods. The organization of midbrain centers was mapped topologically in terms of longitudinal columns and cellular strata on transverse, Nissl-stained sections in the lizard Gallotia galloti. Four columns extend along the whole length of the midbrain. In dorsoventral order: 1) the dorsal band contains the optic tectum, surrounded by three ventricularly prominent subdivisions, named griseum tectale, intermediate area and torus semicircularis, in rostrocaudal order; 2) a subjacent region is named here the lateral band, which forms the ventral margin of the alar plate and also shows three rostrocaudal divisions; 3) the basal band forms the basal plate or tegmentum proper; it appears subdivided into medial and lateral parts: the medial part contains the oculomotor and accessory efferent neurons and the medial basal part of the reticular formation, which includes the red nucleus rostrally; the lateral part contains the lateral basal reticular formation, and includes the substantia nigra caudally; 4) the median band contains the ventral tegmental area, representing the mesencephalic floor plate. The alar regions (dorsal and lateral) show an overall cellular stratification into periventricular, central and superficial strata, with characteristic cytoarchitecture for each part. The lateral band contains two well developed superficial nuclei, one of which is commonly misidentified as an isthmic formation. The basal longitudinal subdivisions are simpler and basically consist of periventricular and central strata.  相似文献   

9.
Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.  相似文献   

10.
Sex steroid hormones are potent regulators of behavior and they exert their effects through influences on sensory, motor, and motivational systems. To elucidate where androgens and estrogens can act to regulate sex-typical behaviors in the túngara frog (Physalaemus pustulosus), we quantified expression of the androgen receptor (AR), estrogen receptor alpha (ERα), and estrogen receptor beta (ERβ) genes in the brains of male and females. To do so, we cloned túngara-specific sequences for AR, ERα, and ERβ, determined their distribution in the brain, and then quantified their expression in areas that are important in sexual communication. We found that AR, ERα, and ERβ were expressed in the pallium, limbic forebrain (preoptic area, hypothalamus, nucleus accumbens, amygdala, septum, striatum), parts of the thalamus, and the auditory midbrain (torus semicircularis). Males and females had a similar distribution of AR and ER expression, but expression levels differed in some brain regions. In the auditory midbrain, females had higher ERα and ERβ expression than males, whereas males had higher AR expression than females. In the forebrain, females had higher AR expression than males in the ventral hypothalamus and medial pallium (homolog to hippocampus), whereas males had higher ERα expression in the medial pallium. In the preoptic area, striatum, and septum, males and females had similar levels of AR and ER expression. Our results suggest that sex steroid hormones have sexually dimorphic effects on auditory processing, sexual motivation, and possibly memory and, therefore, have important implications for sexual communication in this system.  相似文献   

11.
Iron imbalances in the brain, including excess accumulation and deficiency, are associated with neurological disease and dysfunction; yet, their origins are poorly understood. Using systems genetics analysis, we have learned that large individual differences exist in brain iron concentrations, even in the absence of neurological disease. Much of the individual differences can be tied to the genetic makeup of the individual. This genetic-based differential regulation can be modeled in genetic reference populations of rodents. The work in our laboratory centers on iron regulation in the brain and our animal model consists of 25 BXD/Ty recombinant inbred mouse strains. By studying naturally occurring variation in iron phenotypes, such as tissue iron concentration, we can tie that variability to one or more genes by way of quantitative trait loci (QTL) analysis. Moreover, we can conduct genetic correlation analyses between our phenotypes and others previously measured in the BXD/Ty strains. We have observed several suggestive QTL related to ventral midbrain iron content, including one on chromosome 17 that contains btbd9, a gene that in humans has been associated with restless legs syndrome and serum ferritin. We have also observed gene expression correlations with ventral midbrain iron, including btbd9 expression and dopamine receptor expression. In addition, we have observed significant correlations between ventral midbrain iron content and dopamine-related phenotypes. The following is a discussion of iron regulation in the brain and the contributions a systems genetics approach can make toward understanding the genetic underpinnings and relation to neurological disease.  相似文献   

12.
Adherens junctions (AJs) play a role in mechanically connecting adjacent cells to maintain tissue structure, particularly in epithelial cells. The major cell–cell adhesion molecules at AJs are cadherins and nectins. Afadin binds to both nectins and α-catenin and recruits the cadherin-β-catenin complex to the nectin-based cell–cell adhesion site to form AJs. To explore the role of afadin in radial glial and ependymal cells in the brain, we generated mice carrying a nestin-Cre-mediated conditional knockout (cKO) of the afadin gene. Newborn afadin-cKO mice developed hydrocephalus and died neonatally. The afadin-cKO brain displayed enlarged lateral ventricles and cerebral aqueduct, resulting from stenosis of the caudal end of the cerebral aqueduct and obliteration of the ventral part of the third ventricle. Afadin deficiency further caused the loss of ependymal cells from the ventricular and aqueductal surfaces. During development, radial glial cells, which terminally differentiate into ependymal cells, scattered from the ventricular zone and were replaced by neurons that eventually covered the ventricular and aqueductal surfaces of the afadin-cKO midbrain. Moreover, the denuded ependymal cells were only occasionally observed in the third ventricle and the cerebral aqueduct of the afadin-cKO midbrain. Afadin was co-localized with nectin-1 and N-cadherin at AJs of radial glial and ependymal cells in the control midbrain, but these proteins were not concentrated at AJs in the afadin-cKO midbrain. Thus, the defects in the afadin-cKO midbrain most likely resulted from the destruction of AJs, because AJs in the midbrain were already established before afadin was genetically deleted. These results indicate that afadin is essential for the maintenance of AJs in radial glial and ependymal cells in the midbrain and is required for normal morphogenesis of the cerebral aqueduct and ventral third ventricle in the midbrain.  相似文献   

13.
Frizzled transmembrane proteins (Fzd) are receptors of Wnts, and they play key roles during central nervous system (CNS) development in vertebrates. Here we report the expression pattern of Frizzled10 in mouse CNS from embryonic stages to adulthood. Frizzled10 is expressed strongly at embryonic days E8.5 and E9.5 in the neural tube and tail bud. At E10.5, Frizzled10 is expressed in the forebrain vesicle, the fourth ventricle and the dorsal spinal cord. From E12.5 to E16.5, Frizzled10 expression is mainly observed in the cortical hem/fimbria, the neuroepithelium of the third ventricular zone, midbrain, developing cerebellum, and dorsal spinal cord. At P0, with the exception of expression in the fimbria, Frizzled10 mRNA expression is limited to specific nuclei including the ventral posterior thalamic nucleus (VP) and the dorsal lateral geniculate nucleus (DLG) in the developing thalamus as well as in the proliferative ventricular zone of the developing cerebellum. From P20 to adult, Frizzled10 mRNA is detected only in the internal capsule (ic). Our data show that expression of Frizzled10 is very strong during embryonic development of the CNS and suggest that Frizzled10 may play an essential role in spatial and temporal regulation during neural development.  相似文献   

14.
15.
Lesions of the nigrostriatal pathway are known to induce a compensatory up-regulation of various neurotrophic factors. In this study we examined protein content of basic fibroblast growth factor (FGF-2) in tissue samples taken from the ventral midbrain and striatum at two different time points following a neurotoxic lesion of the nigrostriatal pathway in two different rat strains, the outbred Sprague–Dawley (SD) and inbred F344 × Brown Norway F1 hybrid (F344BNF1). Despite both rat strains having comparable lesions of the nigrostriatal pathway, we observed a difference in the temporal up-regulation of FGF-2 in ventral midbrain samples taken from the side ipsilateral to the lesion. Basic FGF was significantly up-regulated in ventral midbrain in SD rats 1 week post-lesion while we did not observe an up-regulation of FGF-2 in the lesioned ventral midbrain of F344BNF1 at this same time point. However, both strains showed a significant up-regulation of FGF-2 in the lesioned ventral midbrain 3 weeks post-lesion. Sprague–Dawley rats also appeared to be more sensitive to the lesion in terms of up-regulating FGF-2 expression. The differences reported here suggest currently unknown genetic differences between these two strains may be important factors for regulating the compensatory release of neurotrophic factors, such as FGF-2, in response to a neurotoxic lesion of the nigrostriatal pathway.  相似文献   

16.
17.
Wnts are secreted, lipidated proteins that regulate multiple aspects of brain development, including dopaminergic neuron development. In this study, we perform the first purification and signaling analysis of Wnt2 and define the function of Wnt2 in ventral midbrain precursor cultures, as well as in Wnt2-null mice in vivo. We found that purified Wnt2 induces the phosphorylation of both Lrp5/6 and Dvl-2/3, and activates β-catenin in SN4741 dopaminergic cells. Moreover, purified Wnt2 increases progenitor proliferation, and the number of dopaminergic neurons in ventral midbrain precursor cultures. In agreement with these findings, analysis of the ventral midbrain of developing Wnt2-null mice revealed a decrease in progenitor proliferation and neurogenesis that lead to a decrease in the number of postmitotic precursors and dopaminergic neurons. Collectively, our observations identify Wnt2 as a novel regulator of dopaminergic progenitors and dopaminergic neuron development.  相似文献   

18.
Studies in humans and animal models document that acute behavioral responses to ethanol are predisposing factor for the risk of long-term drinking behavior. Prior microarray data from our laboratory document strain- and brain region-specific variation in gene expression profile responses to acute ethanol that may be underlying regulators of ethanol behavioral phenotypes. The non-receptor tyrosine kinase Fyn has previously been mechanistically implicated in the sedative-hypnotic response to acute ethanol. To further understand how Fyn may modulate ethanol behaviors, we used whole-genome expression profiling. We characterized basal and acute ethanol-evoked (3 g/kg) gene expression patterns in nucleus accumbens (NAC), prefrontal cortex (PFC), and ventral midbrain (VMB) of control and Fyn knockout mice. Bioinformatics analysis identified a set of Fyn-related gene networks differently regulated by acute ethanol across the three brain regions. In particular, our analysis suggested a coordinate basal decrease in myelin-associated gene expression within NAC and PFC as an underlying factor in sensitivity of Fyn null animals to ethanol sedation. An in silico analysis across the BXD recombinant inbred (RI) strains of mice identified a significant correlation between Fyn expression and a previously published ethanol loss-of-righting-reflex (LORR) phenotype. By combining PFC gene expression correlates to Fyn and LORR across multiple genomic datasets, we identified robust Fyn-centric gene networks related to LORR. Our results thus suggest that multiple system-wide changes exist within specific brain regions of Fyn knockout mice, and that distinct Fyn-dependent expression networks within PFC may be important determinates of the LORR due to acute ethanol. These results add to the interpretation of acute ethanol behavioral sensitivity in Fyn kinase null animals, and identify Fyn-centric gene networks influencing variance in ethanol LORR. Such networks may also inform future design of pharmacotherapies for the treatment and prevention of alcohol use disorders.  相似文献   

19.
EphB receptor tyrosine kinases and ephrin-B ligands regulate several types of cell-cell interactions during brain development, generally by modulating the cytoskeleton. EphB/ephrinB genes are expressed in the developing neural tube of early mouse embryos with distinct overlapping expression in the ventral midbrain. To test EphB function in midbrain development, mouse embryos compound homozygous for mutations in the EphB2 and EphB3 receptor genes were examined for early brain phenotypes. These mutants displayed a morphological defect in the ventral midbrain, specifically an expanded ventral midline evident by embryonic day E9.5-10.5, which formed an abnormal protrusion into the cephalic flexure. The affected area was comprised of cells that normally express EphB2 and ephrin-B3. A truncated EphB2 receptor caused a more severe phenotype than a null mutation, implying a dominant negative effect through interference with EphB forward (intracellular) signaling. In mutant embryos, the overall number, size, and identity of the ventral midbrain cells were unaltered. Therefore, the defect in ventral midline morphology in the EphB2;EphB3 compound mutant embryos appears to be caused by cellular changes that thin the tissue, forcing a protrusion of the ventral midline into the cephalic space. Our data suggests a role for EphB signaling in morphological organization of specific regions of the developing neural tube.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号