首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The sensing of various extrinsic stimuli triggers the receptor-interacting protein kinase-3 (RIPK3)-mediated signaling pathway, which leads to mixed-lineage kinase-like (MLKL) phosphorylation followed by necroptosis. Although necroptosis is a form of cell death and is involved in inflammatory conditions, the roles of necroptosis in acute pancreatitis (AP) remain unclear. In the current study, we administered caerulein to Ripk3- or Mlkl-deficient mice (Ripk3−/− or Mlkl−/− mice, respectively) and assessed the roles of necroptosis in AP. We found that Ripk3−/− mice had significantly more severe pancreatic edema and inflammation associated with macrophage and neutrophil infiltration than control mice. Consistently, Mlkl−/− mice were more susceptible to caerulein-induced AP, which occurred in a time- and dose-dependent manner, than control mice. Mlkl−/− mice exhibit weight loss, edematous pancreatitis, necrotizing pancreatitis, and acinar cell dedifferentiation in response to tissue damage. Genetic deletion of Mlkl resulted in downregulation of the antiapoptotic genes Bclxl and Cflar in association with increases in the numbers of apoptotic cells, as detected by TUNEL assay. These findings suggest that RIPK3 and MLKL-mediated necroptosis exerts protective effects in AP and caution against the use of necroptosis inhibitors for AP treatment.Subject terms: Acute pancreatitis, Experimental models of disease  相似文献   

3.
目的:研究胆囊切除术后患者发生急性胰腺炎的发病特点。方法:回顾性分析2009年10月至2013年10月四川大学华西医院诊断为急性胰腺炎且既往行胆囊切除术患者的病因、病情严重程度、临床特征与转归。结果:研究共纳入314例患者,以高脂血症性胰腺炎占比最高,共110例(35%),胆源性胰腺炎和混合性胰腺炎分别为107例(32%)、96例(31%),酒精性仅7例(2%)。轻症215例,中度31例,重度68例。高脂血症性胰腺炎患者重症率(36%)、胰腺及胰周坏死率(28%)、持续性器官功能衰竭率(36%)、呼吸衰竭率(41%)、ICU转入率(26%)均显著高于胆源性组和混合组,差异具有统计学意义(P0.05)。结论:胆囊切除后的急性胰腺炎以胆源性胰腺炎和高脂血症性胰腺炎居多,其中高脂血症性胰腺炎的病情更严重。  相似文献   

4.
5.
Our aim was to analyze the effects of dexamethasone (Dx) (1 mg/kg), prophylactically or therapeutically administered, on the inflammatory response triggered by peripheral blood leukocytes during acute pancreatitis (AP) induced in rats by bile-pancreatic duct obstruction (BPDO) and their consequences in the progress of the disease. Flow cytometry was used to analyze the distribution of the major leukocyte populations, the CD45 expression and the activated state of monocytes as reflected by the membrane-bound intercellular adhesion molecule-1 (ICAM-1) and the production of tumor necrosis factor-α (TNF-α) and monocyte chemoattract protein-1 (MCP-1) in response to lipopolysaccaride (LPS). Interleukin-6 (IL-6) plasma levels, pancreatic fluid content and histology of pancreas sections were also evaluated. Dx, given either before or after AP, blunted the monocyte increase induced by BPDO-induced AP, but did not change lymphocyte and neutrophil counts. Membrane-bound ICAM-1 expression did not vary in circulating monocytes during BPDO, either in Dx-treated or non-treated rats. Both Dx treatments inhibited TNF-α and MCP-1 production in non-stimulated and LPS-stimulated monocytes, whose response was found to be higher than in controls from early AP. Leukocyte CD45 expression was found to be reduced in rats with AP and shifted to control values in Dx-post-treated rats. Cytokinemia as well as pancreatic edema and leukocyte infiltration found in BPDO rats were reduced by Dx given either before or after AP. We conclude that prophylactic and therapeutic Dx treatments inhibited the inflammatory response triggered by circulating leukocytes in rats with BPDO-induced AP, thus contributing to reducing the severity of the disease.  相似文献   

6.
Severe hepatic inflammation is a common cause of acute or chronic liver disease. Macrophages are one of the key mediators which regulate the progress of hepatic inflammation. Increasing evidence shows that the TAM (TYRO3, AXL and MERTK) family of RTKs (receptor tyrosine kinases), which is expressed in macrophages, alleviates inflammatory responses through a negative feedback loop. However, the functional contribution of each TAM family member to the progression of hepatic inflammation remains elusive. In this study, we explore the role of individual TAM family proteins during autophagy induction and evaluate their contribution to hepatic inflammation. Among the TAM family of RTKs, AXL (AXL receptor tyrosine kinase) only induces autophagy in macrophages after interaction with its ligand, GAS6 (growth arrest specific 6). Based on our results, autophosphorylation of 2 tyrosine residues (Tyr815 and Tyr860) in the cytoplasmic domain of AXL in mice is required for autophagy induction and AXL-mediated autophagy induction is dependent on MAPK (mitogen-activated protein kinase)14 activity. Furthermore, induction of AXL-mediated autophagy prevents CASP1 (caspase 1)-dependent IL1B (interleukin 1, β) and IL18 (interleukin 18) maturation by inhibiting NLRP3 (NLR family, pyrin domain containing 3) inflammasome activation. In agreement with these observations, axl?/? mice show more severe symptoms than do wild-type (Axl+/+) mice following acute hepatic injury induced by administration of lipopolysaccharide (LPS) or carbon tetrachloride (CCl4). Hence, GAS6-AXL signaling-mediated autophagy induction in murine macrophages ameliorates hepatic inflammatory responses by inhibiting NLRP3 inflammasome activation.  相似文献   

7.
Acute pancreatitis (AP) is a common inflammatory disease mediated by damage to acinar cells and subsequent pancreatic inflammation with infiltration of leukocytes. The neuronal guidance protein, netrin-1, has been shown to control leukocyte trafficking and modulate inflammatory responses in several inflammation-based diseases. The present study was aimed toward investigating the effects of netrin-1 in an in vivo model of AP in mice. AP was induced in C57BL/6 mice by administration of two intraperitoneal injections of L-Arginine (4 g/kg). Mice were treated with recombinant mouse netrin-1 at a dose of 1 µg/mouse or vehicle (0.1% BSA) intravenously through the tail vein immediately after the second injection of L-Arginine, and every 24 h thereafter. Mice were sacrificed at several time intervals from 0 to 96 h after the induction of pancreatitis. Blood and tissue samples of pancreas and lung were collected and processed to determine the severity of pancreatitis biochemically and histologically. Immunohistochemical staining demonstrated that netrin-1 was mainly expressed in the islet cells of the normal pancreas and the AP model pancreas, and the pancreatic expression of netrin-1 was down-regulated at both the mRNA and protein levels during the course of AP. Exogenous netrin-1 administration significantly reduced plasma amylase levels, myeloperoxidase activity, pro-inflammatory cytokine production, and pancreas and lung tissue damages. Furthermore, netrin-1 administration did not cause significant inhibition of nuclear factor-kappa B activation in the pancreas of L-Arginine-induced AP. In conclusion, our novel data suggest that netrin-1 is capable of improving damage of pancreas and lung, and exerting anti-inflammatory effects in mice with severe acute pancreatitis. Thus, our results indicate that netrin-1 may constitute a novel target in the management of AP.  相似文献   

8.
BackgroundAlcohol abuse, a main cause of pancreatitis, has been known to augment NF-κB activation and cell necrosis in pancreatitis. However, the underlying mechanisms are unclear. We recently reported that inhibition of protein kinase D (PKD) alleviated NF-κB activation and severity of experimental pancreatitis. Here we investigated whether PKD signaling mediated the modulatory effects of alcohol abuse on pathological responses in alcoholic pancreatitis.MethodsAlcoholic pancreatitis was provoked in two rodent models with pair-feeding control and ethanol-containing Lieber-DeCarli diets for up to 8 weeks followed by up to 7 hourly intraperitoneal injections of cerulein at 1 μg/kg (rats) or 3 μg/kg (mice). Effects of PKD inhibition by PKD inhibitors or genetic deletion of pancreatic PKD isoform (PKD3Δpanc mice) on alcoholic pancreatitis parameters were determined.ResultsEthanol administration amplified PKD signaling by promoting expression and activation of pancreatic PKD, resulted in augmented/promoted pancreatitis responses. Pharmacological inhibition of PKD or with PKD3Δpanc mice prevented the augmenting/sensitizing effect of ethanol on NF-κB activation and inflammatory responses, cell necrotic death and the severity of disease in alcoholic pancreatitis. PKD inhibition prevented alcohol-enhanced trypsinogen activation, mRNA expression of multiple inflammatory molecules, the receptor-interacting protein kinase activation, ATP depletion, and downregulation of pro-survival Bcl-2 protein in alcoholic pancreatitis. Furthermore, PKD inhibitor CID755673 or CRT0066101, administrated after the induction of pancreatitis in mouse and rat alcoholic pancreatitis models, significantly mitigated the severity of pancreatitis.ConclusionPKD mediates effect of alcohol abuse on pathological process of pancreatitis and constitutes a novel therapeutic target to treat this disease.  相似文献   

9.
BackgroundPosttranslational modification of chemokines is one of the mechanisms that regulate leukocyte migration during inflammation. Multiple natural NH2-terminally truncated forms of the major human neutrophil attractant interleukin-8 or CXCL8 have been identified. Although differential activity was reported for some CXCL8 forms, no biological data are available for others.ConclusionsIn terms of their ability to induce neutrophil recruitment in vivo, the multiple CXCL8 forms may be divided in three groups. The first group includes CXCL8 proteins consisting of 75 to 79 amino acids, cleaved by aminopeptidases, with intermediate activity on neutrophils. The second group, generated through proteolytic cleavage (e.g. by Ser proteases), contains 69 to 72 amino acid forms which are highly potent neutrophil attractants in vivo. A third category is generated through the modification of the arginine in the NH2-terminal region into citrulline by peptidylarginine deiminases and has weak potency to induce neutrophil extravasation.  相似文献   

10.
Reactive oxygen species (ROS) have been implicated in the pathogenesis of acute pancreatitis (AP) for many years but experimental evidence is still limited. Uncoupling protein 2 (UCP2)-deficient mice are an accepted model of age-related oxidative stress. Here, we have analysed how UCP2 deficiency affects the severity of experimental AP in young and older mice (3 and 12 months old, respectively) triggered by up to 7 injections of the secretagogue cerulein (50 μg/kg body weight) at hourly intervals. Disease severity was assessed at time points from 3 hours to 7 days based on pancreatic histopathology, serum levels of alpha-amylase, intrapancreatic trypsin activation and levels of myeloperoxidase (MPO) in lung and pancreatic tissue. Furthermore, in vitro studies with pancreatic acini were performed. At an age of 3 months, UCP2-/- mice and wild-type (WT) C57BL/6 mice were virtually indistinguishable with respect to disease severity. In contrast, 12 months old UCP2-/- mice developed a more severe pancreatic damage than WT mice at late time points after the induction of AP (24 h and 7 days, respectively), suggesting retarded regeneration. Furthermore, a higher peak level of alpha-amylase activity and gradually increased MPO levels in pancreatic and lung tissue were observed in UCP2-/- mice. Interestingly, intrapancreatic trypsin activities (in vivo studies) and intraacinar trypsin and elastase activation in response to cerulein treatment (in vitro studies) were not enhanced but even diminished in the knockout strain. Finally, UCP2-/- mice displayed a diminished ratio of reduced and oxidized glutathione in serum but no increased ROS levels in pancreatic acini. Together, our data indicate an aggravating effect of UCP2 deficiency on the severity of experimental AP in older but not in young mice. We suggest that increased severity of AP in 12 months old UCP2-/- is caused by an imbalanced inflammatory response but is unrelated to acinar cell functions.  相似文献   

11.
The receptor tyrosine kinase Axl is overexpressed in and leads to patient morbidity and mortality in a variety of cancers. Axl–Gas6 interactions are critical for tumor growth, angiogenesis and metastasis. The goal of this study was to investigate the feasibility of imaging graded levels of Axl expression in tumors using a radiolabeled antibody. We radiolabeled anti-human Axl (Axl mAb) and control IgG1 antibodies with 125I with high specific radioactivity and radiochemical purity, resulting in an immunoreactive fraction suitable for in vivo studies. Radiolabeled antibodies were investigated in severe combined immunodeficient mice harboring subcutaneous CFPAC (Axlhigh) and Panc1 (Axllow) pancreatic cancer xenografts by ex vivo biodistribution and imaging. Based on these results, the specificity of [125I]Axl mAb was also validated in mice harboring orthotopic Panc1 or CFPAC tumors and in mice harboring subcutaneous 22Rv1 (Axllow) or DU145 (Axlhigh) prostate tumors by ex vivo biodistribution and imaging studies at 72 h post-injection of the antibody. Both imaging and biodistribution studies demonstrated specific and persistent accumulation of [125I]Axl mAb in Axlhigh (CFPAC and DU145) expression tumors compared to the Axllow (Panc1 and 22Rv1) expression tumors. Axl expression in these tumors was further confirmed by immunohistochemical studies. No difference in the uptake of radioactivity was observed between the control [125I]IgG1 antibody in the Axlhigh and Axllow expression tumors. These data demonstrate the feasibility of imaging Axl expression in pancreatic and prostate tumor xenografts.  相似文献   

12.
13.
14.
For a successful pregnancy, the mother''s immune system has to tolerate the semiallogeneic fetus. A deleterious immune attack is avoided by orchestration of cellular, hormonal, and enzymatic factors. However, the precise mechanisms underlying fetomaternal tolerance are not yet completely understood. In this study, we demonstrate that sphingolipid metabolism constitutes a novel signaling pathway that is indispensable for fetomaternal tolerance by regulating innate immune responses at the fetomaternal interface. Perturbation of the sphingolipid pathway by disruption of the sphingosine kinase gene (Sphk) during pregnancy caused unusually high expression of neutrophil chemoattractants, CXCL1 and CXCL2, in the decidua, leading to a massive infiltration of neutrophils into the fetomaternal interface with enhanced oxidative damage, resulting in early fetal death. Sphk-deficient mice also exhibited neutrophilia in the peripheral blood, enhanced generation of granulocytes in the bone marrow, and a decrease in the number of decidual natural killer cells. The blockage of neutrophil influx protected Sphk-deficient mice against pregnancy loss. Notably, a similar result was obtained in human decidual cells, in which Sphk deficiency dramatically increased the secretion of CXCL1 and IL-8. In conclusion, our findings suggest that the sphingolipid metabolic pathway plays a critical role in fetomaternal tolerance by regulating innate immunity at the fetomaternal interface both in mice and humans, and it could provide novel insight into the development of therapeutic strategies to treat idiopathic pregnancy loss in humans.  相似文献   

15.
Although oxygen free radicals (OFR) are considered to be one of the pathophysiological mechanisms involved in acute pancreatitis (AP), the contribution of acinar cells to their production is not well established. The aim of the present study was to determine the effect of N-acetylcysteine (NAC) in the course of AP induced by pancreatic duct obstruction (PDO) in rats, directly analysing by flow cytometry the quantity of OFR generated in acinar cells. NAC (50 mg/kg) was administered 1 h before and 1 h after PDO. Measurements by flow cytometry of OFR generated in acinar cells were taken at different PDO times over 24 h, using dihydrorhodamine-123 as fluorescent dye. Histological studies of pancreas and measurements of neutrophil infiltration in the pancreas, pancreatic glutathione (GSH), malondialdehyde (MDA) levels, plasma amylase activity and hemoconcentration were carried out in order to assess the severity of AP at different stages. NAC effectively blunted GSH depletion at early AP stages and prevented OFR generation found in acinar cells as a consequence of AP induced by PDO. This attenuation of the redox state impairment reduced cellular oxidative damage, as reflected by less severe pancreatic lesions, normal pancreatic MDA levels, as well as diminished neutrophil infiltration in pancreas. Hyperamylasemia and hemoconcentration following AP induction were ameliorated by NAC administration at early stages, when oxidative stress seems to be critical in the development of pancreatitis. In conclusion, NAC reinforces the antioxidant defences in acinar cells, preventing OFR generation therefore attenuating oxidative damage and subsequently reducing the severity of PDO-induced AP at early stages of the disease.  相似文献   

16.
Obesity is clearly an independent risk factor for increased severity of acute pancreatitis (AP), although the mechanisms underlying this association are unknown. Adipokines (including leptin and adiponectin) are pleiotropic molecules produced by adipocytes that are important regulators of the inflammatory response. We hypothesized that the altered adipokine milieu observed in obesity contributes to the increased severity of pancreatitis. Lean (C57BL/6J), obese leptin-deficient (LepOb), and obese hyperleptinemic (LepDb) mice were subjected to AP by six hourly intraperitoneal injections of cerulein (50 microg/kg). Severity of AP was assessed by histology and by measuring pancreatic concentration of the proinflammatory cytokines IL-1beta and IL-6, the chemokine MCP-1, and the marker of neutrophil activation MPO. Both congenitally obese strains of mice developed significantly more severe AP than wild-type lean animals. Severity of AP was not solely related to adipose tissue volume: LepOb mice were heaviest; however, LepDb mice developed the most severe AP both histologically and biochemically. Circulating adiponectin concentrations inversely mirrored the severity of pancreatitis. These data demonstrate that congenitally obese mice develop more severe AP than lean animals when challenged by cerulein hyperstimulation and suggest that alteration of the adipokine milieu exacerbates the severity of AP in obesity.  相似文献   

17.
BackgroundChaiqin chengqi decoction (CQCQD) is a Chinese herbal formula derived from dachengqi decoction. CQCQD has been used for the management of acute pancreatitis (AP) in the West China Hospital for more than 30 years. Although CQCQD has a well-established clinical efficacy, little is known about its bioactive ingredients, how they interact with different therapeutic targets and the pathways to produce anti-inflammatory effects.PurposeToll-like receptor 4 (TLR4) and the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated pro-inflammatory signaling pathways, play a central role in AP in determining the extent of pancreatic injury and systemic inflammation. In this study, we screened the bioactive ingredients using a pharmacological sub-network analysis based on the TLR4/NLRP3 signaling pathways followed by experimental validation.MethodsThe main CQCQD bioactive compounds were identified by UPLC-QTOF/MS. The TLR4/NLRP3 targets in AP for CQCQD active ingredients were confirmed through a pharmacological sub-network analysis. Mice received 7 intraperitoneal injections of cerulein (50 μg/kg; hourly) to induce AP (CER-AP), while oral gavage of CQCQD (5, 10, 15 and 20 g/kg; 3 doses, 2 hourly) was commenced at the 3rd injection of cerulein. Histopathology and biochemical indices were used for assessing AP severity, while polymerase chain reaction, Western blot and immunohistochemistry analyses were used to study the mechanisms. Identified active CQCQD compounds were further validated in freshly isolated mouse pancreatic acinar cells and cultured RAW264.7 macrophages.ResultsThe main compounds from CQCQD belonged to flavonoids, iridoids, phenols, lignans, anthraquinones and corresponding glycosides. The sub-network analysis revealed that emodin, rhein, baicalin and chrysin were the compounds most relevant for directly regulating the TLR4/NLRP3-related proteins TLR4, RelA, NF-κB and TNF-α. In vivo, CQCQD attenuated the pancreatic injury and systemic inflammation of CER-AP and was associated with reduced expression of TLR4/NLRP3-related mRNAs and proteins. Emodin, rhein, baicalin and chrysin significantly diminished pancreatic acinar cell necrosis with varied effects on suppressing the expression of TLR4/NLRP3-related mRNAs. Emodin, rhein and chrysin also decreased nitric oxide production in macrophages and their combination had synergistic effects on alleviating cell death as well as expression of TLR4/NLRP3-related proteins.ConclusionsCQCQD attenuated the severity of AP at least in part by inhibiting the TLR4/NLRP3 pro-inflammatory pathways. Its active ingredients, emodin, baicalin, rhein and chrysin contributed to these beneficial effects.  相似文献   

18.
Acute pancreatitis (AP) is an inflammatory disease involving acinar cell injury and rapid production and release of inflammatory cytokines, which play a dominant role in local pancreatic inflammation and systemic complications. 2',4',6'-Tris (methoxymethoxy) chalcone (TMMC), a synthetic chalcone derivative, displays potent anti-inflammatory effects. Therefore, we aimed to investigate whether TMMC might affect the severity of AP and pancreatitis-associated lung injury in mice. We used the cerulein hyperstimulation model of AP. Severity of pancreatitis was determined in cerulein-injected mice by histological analysis and neutrophil sequestration. The pretreatment of mice with TMMC reduced the severity of AP and pancreatitis-associated lung injury and inhibited several biochemical parameters (activity of amylase, lipase, trypsin, trypsinogen, and myeloperoxidase and production of proinflammatory cytokines). In addition, TMMC inhibited pancreatic acinar cell death and production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 by inhibiting NF-κB and extracellular signal-regulated protein kinase 1/2 (ERK1/2) activation. Neutralizing antibodies for TNF-α, IL-1β, and IL-6 inhibited cerulein-induced cell death in isolated pancreatic acinar cells. Moreover, pharmacological blockade of NF-κB/ERK1/2 reduced acinar cell death and production of TNF-α, IL-1β, and IL-6 in isolated pancreatic acinar cells. In addition, posttreatment of mice with TMMC showed reduced severity of AP and lung injury. Our results suggest that TMMC may reduce the complications associated with pancreatitis.  相似文献   

19.
We investigated the effect of a specific neurokinin-1 receptor (NK1R) antagonist, CP-96,345, on the regulation of the expression of adhesion molecules ICAM-1, VCAM-1, E-selectin, and P-selectin as well as leukocyte recruitment during acute pancreatitis (AP). AP was induced in male Balb/C mice by 10 consecutive hourly intraperitoneal injections of caerulein. In the treatment groups, CP-96,345 was administered at 2.5 mg/kg ip either 30 min before or 1 h after the first caerulein injection. Animals were killed, and the lungs and pancreas were isolated for RNA extraction and RT-PCR or for immunohistochemical staining. mRNA expression of the four adhesion molecules was upregulated in the pancreas during AP. Treatment with CP-96,345 effectively reduced the mRNA expression of P-selectin and E-selectin but not ICAM-1 and VCAM-1. In the lung, ICAM-1, E-selectin, and P-selectin mRNA expression increased during AP. Antagonist treatment suppressed this elevation. Similar expression patterns were seen in the immunohistochemical stainings. Intravital microscopy of the pancreatic microcirculation revealed the effect of CP-96,345 on leukocyte recruitment. The present study provides important information on the relationship between NK1R activation and the regulation of adhesion molecules. Also, this study points to the differential regulation of inflammation in the pancreas and lung with AP.  相似文献   

20.
Removal of apoptotic cells by phagocytes (also called efferocytosis) is a crucial process for tissue homeostasis. Professional phagocytes express a plethora of surface receptors enabling them to sense and engulf apoptotic cells, thus avoiding persistence of dead cells and cellular debris and their consequent effects. Dysregulation of efferocytosis is thought to lead to secondary necrosis and associated inflammation and immune activation. Efferocytosis in primarily murine macrophages and dendritic cells has been shown to require TAM RTKs, with MERTK and AXL being critical for clearance of apoptotic cells. The functional role of human orthologs, especially the exact contribution of each individual receptor is less well studied. Here we show that human macrophages differentiated in vitro from iPSC-derived precursor cells express both AXL and MERTK and engulf apoptotic cells. TAM RTK agonism by the natural ligand growth-arrest specific 6 (GAS6) significantly enhanced such efferocytosis. Using a newly-developed mouse model of kinase-dead MERTK, we demonstrate that MERTK kinase activity is essential for efferocytosis in peritoneal macrophages in vivo. Moreover, human iPSC-derived macrophages treated in vitro with blocking antibodies or small molecule inhibitors recapitulated this observation. Hence, our results highlight a conserved MERTK function between mice and humans, and the critical role of its kinase activity in homeostatic efferocytosis.Subject terms: Immune cell death, Peritoneal macrophages  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号