首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high mortality, which is prevalent in tropical regions of the world. A recent study shows that B. pseudomallei can survive inside mammalian cells because of its ability to actively evade cell autophagy. However, the underlying mechanisms remain unclear. In the present study, based on microarray screening, we found that ATG10 was downregulated following B. pseudomallei infection in A549 human lung epithelial cells. Forced expression of ATG10 accelerated the elimination of intracellular B. pseudomallei by enhancing the process of autophagy. Moreover, MIR4458, MIR4667-5p, and MIR4668-5p were found, by microarray screening, to be upregulated in response to B. pseudomallei infection. These 3 novel miRNAs, MIR4458, MIR4667-5p, and MIR4668-5p, targeted to the 3′-untranslated region of ATG10 in different time-course and spatial manners. Upregulation of these miRNAs reduced the level of ATG10 and inhibited autophagy, leading to increasing survival rate of intracellular B. pseudomallei. Furthermore, the increase of these miRNAs was correlated with the reduced promoter methylation status in A549 cells in response to B. pseudomallei infection. Our results reveal that 3 novel miRNAs regulate autophagy-mediated elimination of B. pseudomallei by targeting ATG10, and provide potential targets for clinical treatment.  相似文献   

2.
Infection by the Gram-negative pathogen Burkholderia pseudomallei results in the disease melioidosis, acquired from the environment in parts of southeast Asia and northern Australia. Clinical symptoms of melioidosis range from acute (fever, pneumonia, septicemia, and localized infection) to chronic (abscesses in various organs and tissues, most commonly occurring in the lungs, liver, spleen, kidney, prostate and skeletal muscle), and persistent infections in humans are difficult to cure. Understanding the basic biology and genomics of B. pseudomallei is imperative for the development of new vaccines and therapeutic interventions. This formidable task is becoming more tractable due to the increasing number of B. pseudomallei genomes that are being sequenced and compared.Here, we compared three B. pseudomallei genomes, from strains MSHR668, K96243 and 1106a, to identify features that might explain why MSHR668 is more virulent than K96243 and 1106a in a mouse model of B. pseudomallei infection. Our analyses focused on metabolic, virulence and regulatory genes that were present in MSHR668 but absent from both K96243 and 1106a. We also noted features present in K96243 and 1106a but absent from MSHR668, and identified genomic differences that may contribute to variations in virulence noted among the three B. pseudomallei isolates. While this work contributes to our understanding of B. pseudomallei genomics, more detailed experiments are necessary to characterize the relevance of specific genomic features to B. pseudomallei metabolism and virulence. Functional analyses of metabolic networks, virulence and regulation shows promise for examining the effects of B. pseudomallei on host cell metabolism and will lay a foundation for future prediction of the virulence of emerging strains. Continued emphasis in this area will be critical for protection against melioidosis, as a better understanding of what constitutes a fully virulent Burkholderia isolate may provide for better diagnostic and medical countermeasure strategies.  相似文献   

3.
The autotransporters are a large and diverse family of bacterial secreted and outer membrane proteins, which are present in many Gram-negative bacterial pathogens and play a role in numerous environmental and virulence-associated interactions. As part of a larger systematic study on the autotransporters of Burkholderia pseudomallei, the causative agent of the severe tropical disease melioidosis, we have constructed an insertion mutant in the bpss1439 gene encoding an unstudied predicted trimeric autotransporter adhesin. The bpss1439 mutant demonstrated a significant reduction in biofilm formation at 48 hours in comparison to its parent 10276 wild-type strain. This phenotype was complemented to wild-type levels by the introduction of a full-length copy of the bpss1439 gene in trans. Examination of the wild-type and bpss1439 mutant strains under biofilm-inducing conditions by microscopy after 48 hours confirmed that the bpss1439 mutant produced less biofilm compared to wild-type. Additionally, it was observed that this phenotype was due to low levels of bacterial adhesion to the abiotic surface as well as reduced microcolony formation. In a murine melioidosis model, the bpss1439 mutant strain demonstrated a moderate attenuation for virulence compared to the wild-type strain. This attenuation was abrogated by in trans complementation, suggesting that bpss1439 plays a subtle role in the pathogenesis of B. pseudomallei. Taken together, these studies indicate that BPSS1439 is a novel predicted autotransporter involved in biofilm formation of B. pseudomallei; hence, this factor was named BbfA, Burkholderia biofilm factor A.  相似文献   

4.
Enteropathogenic and enterohaemorrhagic Escherichia coli express a cell cycle-inhibiting factor (Cif), that is injected into host cells via a Type III secretion system (T3SS) leading to arrest of cell division, delayed apoptosis and cytoskeletal rearrangements. A homologue of Cif has been identified in Burkholderia pseudomallei (CHBP; Cif homologue in B. pseudomallei; BPSS1385), which shares catalytic activity, but its prevalence, secretion and function are ill-defined. Among 43 available B. pseudomallei genome sequences, 33 genomes (76.7%) harbor the gene encoding CHBP. Western blot analysis using antiserum raised to a synthetic CHBP peptide detected CHBP in 46.6% (7/15) of clinical B. pseudomallei isolates from the endemic area. Secretion of CHBP into bacterial culture supernatant could not be detected under conditions where a known effector (BopE) was secreted in a manner dependent on the Bsa T3SS. In contrast, CHBP could be detected in U937 cells infected with B. pseudomallei by immunofluorescence microscopy and Western blotting in a manner dependent on bsaQ. Unlike E. coli Cif, CHBP was localized within the cytoplasm of B. pseudomallei-infected cells. A B. pseudomallei chbP insertion mutant showed a significant reduction in cytotoxicity and plaque formation compared to the wild-type strain that could be restored by plasmid-mediated trans-complementation. However, there was no defect in actin-based motility or multinucleated giant cell formation by the chbP mutant. The data suggest that the level or timing of CHBP secretion differs from a known Bsa-secreted effector and that CHBP is required for selected virulence-associated phenotypes in vitro.  相似文献   

5.
Burkholderia pseudomallei is the causative agent of melioidosis and a potential bioterrorism agent. In the development of medical countermeasures against B. pseudomallei infection, the US Food and Drug Administration (FDA) animal Rule recommends using well-characterized strains in animal challenge studies. In this study, whole genome sequence data were generated for 6 B. pseudomallei isolates previously identified as candidates for animal challenge studies; an additional 5 isolates were sequenced that were associated with human inhalational melioidosis. A core genome single nucleotide polymorphism (SNP) phylogeny inferred from a concatenated SNP alignment from the 11 isolates sequenced in this study and a diverse global collection of isolates demonstrated the diversity of the proposed Animal Rule isolates. To understand the genomic composition of each isolate, a large-scale blast score ratio (LS-BSR) analysis was performed on the entire pan-genome; this demonstrated the variable composition of genes across the panel and also helped to identify genes unique to individual isolates. In addition, a set of ~550 genes associated with pathogenesis in B. pseudomallei were screened against the 11 sequenced genomes with LS-BSR. Differential gene distribution for 54 virulence-associated genes was observed between genomes and three of these genes were correlated with differential virulence observed in animal challenge studies using BALB/c mice. Differentially conserved genes and SNPs associated with disease severity were identified and could be the basis for future studies investigating the pathogenesis of B. pseudomallei. Overall, the genetic characterization of the 11 proposed Animal Rule isolates provides context for future studies involving B. pseudomallei pathogenesis, differential virulence, and efficacy to therapeutics.  相似文献   

6.

Background

Burkholderia thailandensis is a non-pathogenic environmental saprophyte closely related to Burkholderia pseudomallei, the causative agent of the often fatal animal and human disease melioidosis. To study B. thailandensis genomic variation, we profiled 50 isolates using a pan-genome microarray comprising genomic elements from 28 Burkholderia strains and species.

Results

Of 39 genomic regions variably present across the B. thailandensis strains, 13 regions corresponded to known genomic islands, while 26 regions were novel. Variant B. thailandensis isolates exhibited isolated acquisition of a capsular polysaccharide biosynthesis gene cluster (B. pseudomallei-like capsular polysaccharide) closely resembling a similar cluster in B. pseudomallei that is essential for virulence in mammals; presence of this cluster was confirmed by whole genome sequencing of a representative variant strain (B. thailandensis E555). Both whole-genome microarray and multi-locus sequence typing analysis revealed that the variant strains formed part of a phylogenetic subgroup distinct from the ancestral B. thailandensis population and were associated with atypical isolation sources when compared to the majority of previously described B. thailandensis strains. In functional assays, B. thailandensis E555 exhibited several B. pseudomallei-like phenotypes, including colony wrinkling, resistance to human complement binding, and intracellular macrophage survival. However, in murine infection assays, B. thailandensis E555 did not exhibit enhanced virulence relative to other B. thailandensis strains, suggesting that additional factors are required to successfully colonize and infect mammals.

Conclusions

The discovery of such novel variant strains demonstrates how unbiased genomic surveys of non-pathogenic isolates can reveal insights into the development and emergence of new pathogenic species.  相似文献   

7.
Burkholderia pseudomallei is the causative agent of the severe tropical disease melioidosis, which commonly presents as sepsis. The B. pseudomallei K96243 genome encodes eleven predicted autotransporters, a diverse family of secreted and outer membrane proteins often associated with virulence. In a systematic study of these autotransporters, we constructed insertion mutants in each gene predicted to encode an autotransporter and assessed them for three pathogenesis-associated phenotypes: virulence in the BALB/c intra-peritoneal mouse melioidosis model, net intracellular replication in J774.2 murine macrophage-like cells and survival in 45% (v/v) normal human serum. From the complete repertoire of eleven autotransporter mutants, we identified eight mutants which exhibited an increase in median lethal dose of 1 to 2-log10 compared to the isogenic parent strain (bcaA, boaA, boaB, bpaA, bpaC, bpaE, bpaF and bimA). Four mutants, all demonstrating attenuation for virulence, exhibited reduced net intracellular replication in J774.2 macrophage-like cells (bimA, boaB, bpaC and bpaE). A single mutant (bpaC) was identified that exhibited significantly reduced serum survival compared to wild-type. The bpaC mutant, which demonstrated attenuation for virulence and net intracellular replication, was sensitive to complement-mediated killing via the classical and/or lectin pathway. Serum resistance was rescued by in trans complementation. Subsequently, we expressed recombinant proteins of the passenger domain of four predicted autotransporters representing each of the phenotypic groups identified: those attenuated for virulence (BcaA), those attenuated for virulence and net intracellular replication (BpaE), the BpaC mutant with defects in virulence, net intracellular replication and serum resistance and those displaying wild-type phenotypes (BatA). Only BcaA and BpaE elicited a strong IFN-γ response in a restimulation assay using whole blood from seropositive donors and were recognised by seropositive human sera from the endemic area. To conclude, several predicted autotransporters contribute to B. pseudomallei virulence and BpaC may do so by conferring resistance against complement-mediated killing.  相似文献   

8.
Burkholderia pseudomallei is the causative agent of melioidosis, a disease with a mortality rate of up to 40% even with treatment. Despite the ability of certain antibiotics to control initial infection, relapse occurs in treated patients. The inability of antibiotics to clear this bacterial infection is in part due to persistence, an evasion mechanism against antibiotics and the effect of host defenses. Evaluation of antibiotic efficacy against B. pseudomallei revealed that up to 48% of in vitro grown populations can survive in a persister state. Toxin–antitoxin (TA) systems have been previously implicated in modulating bacterial persistence. We generated three isogenic TA mutants and found that loss of each toxin gene did not alter antibiotic persistence or macrophage survival. In response to macrophage‐induced persistence, all three toxin mutants demonstrated increased intracellular susceptibility to levofloxacin which in part was due to the inability of the mutants to induce persistence after nitric oxide or nutrient starvation. In an inhalational model of murine melioidosis, both ΔBPSS0395 and ΔBPSS1584 strains were attenuated, and treatment with levofloxacin led to significant reduction in lung colonisation and reduced splenic colonisation by ΔBPSS0395. Based on our findings, these toxins deserve additional evaluation as putative therapeutic targets.  相似文献   

9.
In this post genomic era, there are a great number of in silico annotated hypothetical genes. However, experimental validation of the functionality of these genes remains tentative. Two of the major challenges faced by researcher are whether these hypothetical genes are protein-coding genes and whether their corresponding predicted translational start codons are correct. In this report, we demonstrate a convenient procedure to validate the presence of a hypothetical gene product of BPSS1356 from Burkholderia pseudomallei as well as its start codon. It was done by integration of a His-Tag coding sequence into C-terminal end of BPSS1356 gene via homologous recombination. We then purified the native protein using affinity chromatography. The genuine start codon of BPSS1356 was then determined by protein N-terminal sequencing.  相似文献   

10.
11.
12.
13.
《Autophagy》2013,9(6):744-753
Burkholderia pseudomallei is the causative agent of melioidosis, a tropical infection of humans and other animals. The bacterium is an intracellular pathogen that can escape from endosomes into the host cytoplasm, where it replicates and infects adjacent cells. We investigated the role played by autophagy in the intracellular survival of B. pseudomallei in phagocytic and non-phagocytic cell lines. Autophagy was induced in response to B. pseudomallei invasion of murine macrophage (RAW 264.7) cells and a proportion of the bacteria co-localized with the autophagy effector protein LC3, a marker for autophagosome formation. Pharmacological stimulation of autophagy in RAW 264.7 and murine embryonic fibroblast (MEF) cell lines resulted in increased co-localization of B. pseudomallei with LC3 while basal levels of co-localization could be abrogated using inhibitors of the autophagic pathway. Furthermore, induction of autophagy decreased the intracellular survival of B. pseudomallei in these cell lines, but bacterial survival was not affected in MEF cell lines deficient in autophagy. Treatment of infected macrophages with chloramphenicol increased the proportion of bacteria within autophagosomes indicating that autophagic evasion is an active process relying on bacterial protein synthesis. Consistent with this hypothesis, we identified a B. pseudomallei type III secreted protein, BopA, which plays a role in mediating bacterial evasion of autophagy. We conclude that the autophagic pathway is a component of the innate defense system against invading B. pseudomallei, but which the bacteria can actively evade. However, when autophagy is pharmacologically induced using rapamycin, bacteria are actively sequestered in autophagosomes, ultimately decreasing their survival.  相似文献   

14.
15.
16.
Burkholderia pseudomallei is the causative agent of melioidosis and is a major mediator of sepsis in its endemic areas. Because of the low LD50 via aerosols and resistance to multiple antibiotics, it is considered a Tier 1 select agent by the CDC and APHIS. B. pseudomallei is an encapsulated bacterium that can infect, multiply, and persist within a variety of host cell types. In vivo studies suggest that macrophages and neutrophils are important for controlling B. pseudomallei infections, however few details are known regarding how neutrophils respond to these bacteria. Our goal is to describe the capacity of human neutrophils to control highly virulent B. pseudomallei compared to the relatively avirulent, acapsular B. thailandensis using in vitro analyses. B. thailandensis was more readily phagocytosed than B. pseudomallei, but both displayed similar rates of persistence within neutrophils, indicating they possess similar inherent abilities to escape neutrophil clearance. Serum opsonization studies showed that both were resistant to direct killing by complement, although B. thailandensis acquired significantly more C3 on its surface than B. pseudomallei, whose polysaccharide capsule significantly decreased the levels of complement deposition on the bacterial surface. Both Burkholderia species showed significantly enhanced uptake and killing by neutrophils after critical levels of C3 were deposited. Serum-opsonized Burkholderia induced a significant respiratory burst by neutrophils compared to unopsonized bacteria, and neutrophil killing was prevented by inhibiting NADPH-oxidase. In summary, neutrophils can efficiently kill B. pseudomallei and B. thailandensis that possess a critical threshold of complement deposition, and the relative differences in their ability to resist surface opsonization may contribute to the distinct virulence phenotypes observed in vivo.  相似文献   

17.
Melioidosis is an emerging, potentially fatal disease caused by Burkholderia pseudomallei, which requires prolonged antibiotic treatment to prevent disease relapse. However, difficulties in laboratory diagnosis of melioidosis may delay treatment and affect disease outcomes. Isolation of B. pseudomallei from clinical specimens has been improved with the use of selective media. However, even with positive cultures, identification of B. pseudomallei can be difficult in clinical microbiology laboratories, especially in non-endemic areas where clinical suspicion is low. Commercial identification systems may fail to distinguish between B. pseudomallei and closely related species such as Burkholderia thailandensis. Genotypic identification of suspected isolates can be achieved by sequencing of gene targets such as groEL which offer higher discriminative power than 16S rRNA. Specific PCR-based identification of B. pseudomallei has also been developed using B. pseudomallei-specific gene targets such as Type III secretion system and Tat-domain protein. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolutionary technique for pathogen identification, has been shown to be potentially useful for rapid identification of B. pseudomallei, although existing databases require optimization by adding reference spectra for B. pseudomallei. Despite these advances in bacterial identification, diagnostic problems encountered in culture-negative cases remain largely unresolved. Although various serological tests have been developed, they are generally unstandardized “in house” assays and have low sensitivities and specificities. Although specific PCR assays have been applied to direct clinical and environmental specimens, the sensitivities for diagnosis remain to be evaluated. Metabolomics is an uprising tool for studying infectious diseases and may offer a novel approach for exploring potential diagnostic biomarkers. The metabolomics profiles of B. pseudomallei culture supernatants can be potentially distinguished from those of related bacterial species including B. thailandensis. Further studies using bacterial cultures and direct patient samples are required to evaluate the potential of metabolomics for improving diagnosis of melioidosis.  相似文献   

18.
It is largely unknown how mammalian genomes evolve under rapid speciation and environmental adaptation. An excellent model for understanding fast evolution is provided by the genus Sus, which diverged relatively recently and lacks postzygotic isolation. Here, we present a high-quality reference genome of the Visayan warty pig, which is specialized to a tropical island environment. Comparing the genome sequences and chromatin contact maps of the Visayan warty pig (Sus cebifrons) and domestic pig (Sus scrofa), we characterized the dynamics of chromosomal structure evolution during Sus speciation, revealing the similar chromosome conformation as the potential biological mechanism of frequent postdivergence hybridization among Suidae. We further investigated the different signatures of adaptive selection and domestication in Visayan warty pig and domestic pig with specific emphasize on the evolution of olfactory and gustatory genes, elucidating higher olfactory diversity in Visayan warty pig and positive and relaxed evolution of bitter and fat taste receptors, respectively, in domestic pig. Our comprehensive evolutionary and comparative genome analyses provide insight into the dynamics of genomes and how these change over relative short evolutionary times, as well as how these genomic differences encode for differences in the phenotypes.  相似文献   

19.
Burkholderia pseudomallei is a facultative intracellular Gram‐negative bacterium which is capable of surviving and multiplying inside macrophages. B. pseudomallei strain SRM117, a LPS mutant which lacks the O‐antigenic polysaccharide moiety, is more susceptible to macrophage killing during the early phase of infection than is its parental wild type strain (1026b). In this study, it was shown that the wild type is able to induce expression of genes downstream of the MyD88‐dependent (iκbζ, il‐6 and tnf‐α), but not of the MyD88‐independent (inos, ifn‐β and irg‐1), pathways in the mouse macrophage cell line RAW 264.7. In contrast, LPS mutant‐infected macrophages were able to express genes downstream of both pathways. To elucidate the significance of activation of the MyD88‐independent pathway in B. pseudomallei‐infected macrophages, the expression of TBK1, an essential protein in the MyD88‐independent pathway, was silenced prior to the infection. The results showed that silencing the tbk1 expression interferes with the gene expression profile in LPS mutant‐infected macrophages and allows the bacteria to replicate intracellularly, thus suggesting that the MyD88‐independent pathway plays an essential role in controlling intracellular survival of the LPS mutant. Moreover, exogenous IFN‐γ upregulated gene expression downstream of the MyD88‐independent pathway, and interfered with intracellular survival in both wild type and tbk1‐knockdown macrophages infected with either the wild type or the LPS mutant. These results suggest that gene expression downstream of the MyD88‐independent pathway is essential in regulating the intracellular fate of B. pseudomallei, and that IFN‐γ regulates gene expression through the TBK1‐independent pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号