首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Periodic events in the cell cycle   总被引:5,自引:0,他引:5  
  相似文献   

2.
Biochemical events in the animal cell cycle   总被引:9,自引:0,他引:9  
  相似文献   

3.
4.
Summary At concentrations that did not affect growth, hydroxyurea and 21-deoxyadenosine inhibited DNA synthesis inChlamydomonas. Evidence that initiation of mitosis is dependent upon completion of DNA replication was provided by the arrest of inhibited cells with undivided nuclei containing undispersed nucleoli. Initiation of cytokinesis is not dependent upon progress of nuclear division since, in arrested cells, cleavage microtubules became deployed in a phycoplast and a cleavage furrow developed fully, until obstructed by the undivided nucleus. Chloroplast constriction and division also continued independently of nuclear division. It is concluded that nuclear division, cytoplasmic cleavage and chloroplast division are in separate sequences of dependent events. This is supported by flexibility of their relative timing in successive divisions, since after the first commitment to divide nuclear division is followed by initiation of cleavage and then chloroplast division, whereas following subsequent commitments these events occur in reverse time order. This flexibility of order indicates changing rates of progress through separate sequences of events.Deposition of wall material was dependent upon the completion of cytokinesis, but this inhibition of wall deposition by incomplete cytokinesis did not extend to other daughters within the same mother cell.These observations are correlated with our earlier data concerning the rate-limiting control points for division and a model for the coordination of division events is presented. The relationships between different plant cell cycles is discussed in view of the findings presented.  相似文献   

5.
Cell size, cell growth, and cell cycle events are necessarily intertwined to achieve robust bacterial replication. Yet, a comprehensive and integrated view of these fundamental processes is lacking. Here, we describe an image‐based quantitative screen of the single‐gene knockout collection of Escherichia coli and identify many new genes involved in cell morphogenesis, population growth, nucleoid (bulk chromosome) dynamics, and cell division. Functional analyses, together with high‐dimensional classification, unveil new associations of morphological and cell cycle phenotypes with specific functions and pathways. Additionally, correlation analysis across ~4,000 genetic perturbations shows that growth rate is surprisingly not predictive of cell size. Growth rate was also uncorrelated with the relative timings of nucleoid separation and cell constriction. Rather, our analysis identifies scaling relationships between cell size and nucleoid size and between nucleoid size and the relative timings of nucleoid separation and cell division. These connections suggest that the nucleoid links cell morphogenesis to the cell cycle.  相似文献   

6.
The study of retroviruses over the last century has revealed a wide variety of disease-producing mechanisms, as well as apparently harmless interactions with animal hosts. Despite their potential pathogenic properties, the intrinsic features of retroviruses have been harnessed to create gene transfer vectors that may be useful for the treatment of disease. Retroviruses, as all viruses, have evolved to infect specific cells within the host, and such specificities are relevant to both pathogenesis and retrovirus-based vector design. The majority of cells of an animal host are not progressing rapidly through the cell cycle, and such a cellular environment appears to be suboptimal for replication of all retroviruses. Retrovirus-based vectors can therefore be restricted in many important target cells, such as post-mitotic differentiated cells or stem cells that may divide only infrequently. Despite intense interest, our understanding of how cell cycle status influences retroviral infection is still quite limited. In this review, we focus on the importance of the cell cycle as it relates to the early steps in retroviral replication. Retroviruses have been categorized based on their abilities to complete these early steps in non-cycling cells. However, all retroviruses are subject to a variety of cell cycle restrictions. Here, we discuss such restrictions, and how they may block retroviral replication, be tolerated, or overcome.  相似文献   

7.
A program in BASIC is described which allows accurate quantificationof some numerical parameters that can be objectively correlatedto biological indexes in sigmoid biological events. Attentionwas focused on the polymerization process of actin (a muscleprotein with a mol. wt of 42 000 daltons) studied as the variationin the OD360 index with time. The experimental points, if plotted,can be well approximated by a rational function of the typeOD360 = f(t), which passes through the origin and can be representedgraphically by a sigmoid curve. The program was very helpfulin comparing the experimental curves and in analysing significantparameters, such as maximum velocity and asymptote, that characterizethese curves and whose interpretation would otherwise be purelysubjective. Received on July 11, 1985; accepted on January 13, 1986  相似文献   

8.
Pierrez  José  Ronot  Xavier 《Acta biotheoretica》1992,40(2-3):131-137
Estimation of the repartition of asynchronous cells in the cell cycle can be explained by two hypotheses: the cells are supposed to be distributed into three groups: cells with a 2c DNA content (G0/1 phase), cells with a 4c DNA content (G2 + M phase) and cells with a DNA content ranging from 2c to 4c (S phase); there is a linear relationship between the amount of fluorescence emitted by the fluorescent probe which reveals the DNA and the DNA content. According to these hypotheses, the cell cycle can be represented by the following equation: [formula: see text] All the solutions for this equation are approximations. Non parametric methods (or graphical methods: rectangle, peak reflect) only use one or two phase(s) of the cell cycle, the remaining phase(s) being estimated by exclusion. In parametric methods (Dean & Jett, Baisch II, Fried), the DNAT(x) distribution is supposed to be known and is composed of two gaussians (representative of G0/1 and G2 + M) and a P(x,y) function representative of S phase. Despite the generality, these models are not applicable to all sample types, particularly heterogeneous cell populations with various DNA content. In addition, the cell cycle is dependent on several regulation points (transition from quiescence to proliferation, DNA synthesis initiation, mitosis induction) and biological perturbations can also lead to cytokinesis perturbations. Before the emergence of flow cytometry, the current view of cell cycle resided in the assessment of cell proliferation (increase in cell number) or the kinetic of molecules incorporation (DNA precursors).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
BackgroundNanoplastics in the environment can enter the human body through gastrointestinal intake, dermal contact, and pulmonary inhalation, posing a threat to human health. Protein molecules in body fluids will quickly adsorb on the surfaces of the nanoplastics, forming a protein corona, which has implications for the interaction of the nanoplastics with cells and the metabolic pathways of the nanoplastic within cells. For years, practical tools such as dynamic light scattering, transmission electron microscopy, and liquid chromatography have been developed to understand the protein corona of nanoparticles (NPs), either in vitro or in cellular or molecular level. However, an integrated approach to understand the nanoparticles-protein corona is still lacking.MethodsUsing the most frequently observed environmental nanoplastics, polystyrene nanoplastics (PS), as a standard, we established an integrative structural characterization platform, a biophysical and biochemical evaluation method to investigate the effect of surface charge on protein corona composition. The cellular and molecular mechanisms were also explored through in vitro cellular experiments.ResultsThe first integrative method for characterizing biological properties of NPs-protein corona has been established. This method comprehensively covers the critical aspects to understand NPs-protein corona interactions, from structure to function.ConclusionsThe integrative method for nanoplastics microstructure characterization can be applied to the structural characterization of nanoparticles in nanoscale, which is of universal significance from in vitro characterization to cellular experiments and then to molecular mechanism studies.General significanceThis strategy has high reliability and repeatability and can be applied both in environment and nanomedicine safety assessment.  相似文献   

10.
The concepts of cell theory and the notions of coordinate regulation of the cell cycle have been known for centuries but the conundrum of coordinate regulation of the cell cycle remains to be resolved. The unique characteristics of the cell division cycle of Synechococcus, a photosynthetic bacterium, suggest the existence of a complex network of light/dark responsive gene regulatory factors that coordinate its cell cycle events. Evaluation of the highly ordered cell cycle of Synechococcus led to the construction of workable models that coordinate the cell cycle events. A central issue in bacterial cell growth is the elucidation of the genetic regulatory mechanisms that coordinate the cell cycle events. Synechococcus, a unicellular cyanobacterium, displays a peculiar cell growth cycle. In the light growth conditions, a highly ordered and sequentially coordinated appearances of r-protein synthesis, rRNA synthesis, DNA replication, chromosome segregation, and cell septum formation occur (Figs 1, 2A). Cell membrane syntheses occur predominantly during mid-cell cycle and cell division period. Synthesis of thylakoid (=photosynthetic apparatus) is thought to occur during mid-cell cycle and coincides with a period of peak phospholipid synthesis and oxygen production (Csatorday and Horvath, 1977; Asato, 1979). Cell wall syntheses occur in short discontinuous periods throughout the cell cycle and during cell division (Asato, 1984). Distinct D1 (=G1), C (S) and D2 (=G2) periods as defined by Cooper and Helmstetter (1968) are observed in synchronized cultures of Synechococcus (Asato, 1979). When light grown cultures are placed in the dark, the ongoing cell cycles are aborted in the dark (Fig. 3A) and cell divisions do not occur (Asato, 1983; Marino and Asato, 1986). Upon re-exposure of the cell cultures to the light growth conditions, about 14 h later, new cell cycles are re-initiated. These characteristics of cell growth are considered to be expressions of a unique strategy of obligate phototrophic mode of growth to perpetuate their species (Asato, 2003). Nevertheless, the intermediate metabolism, the synthesis of building block molecules, the genetics and molecular biology in the formation of major macromolecules are similarto heterotrophs such as E. coli. In any case, the genes that are involved in the formation of the cellular structures and the genes that control the orderly appearances of the cell cycle events must be coordinated by novel genetic mechanisms. Currently, there are no known physiological/physical mechanisms, growth rate dependent factors or traditional genetic regulatory mechanisms that could explain the coordinate regulation of the cell cycle events in bacteria (Newton and Ohta, 1992; Vinella and D'Ari, 1995; Donachie, 2001; Margolin and Bernander, 2004). Because the genetic mechanisms of coordinate regulation of cell cycle events in bacteria are largely unexplained, the questions on how Synechococcus coordinates the cell cycle events present a difficult problem to resolve. Nevertheless, the problems with regard to the coordinate regulation of the cell cycle events of Synechococcus must be considered. Possible solutions are developed and described in this article. The proposed schemes do not exclude the formation of other genetic mechanisms on the regulation of cell cycle events in Synechococcus. Although the cell cycle of Synechococcus is not widely known, the issues on the coordinate regulation of the cell cycle events are not trivial since similar regulatory mechanisms most likely occur in other prokaryotes.  相似文献   

11.
12.
We have made use of 2 alternative methodologies to obtain 3-way differential staining (TWD) in third-mitosis (M3) chromosomes of Allium cepa, which involve different uptakes of bromodeoxyuridine (BrdU) through 3 cell divisions, in order to evaluate the sister-chromatid exchanges (SCE) frequency on a per-cell-cycle basis.The main innovation introduced by us to the original protocols previously reported has been the use of 5-fluorodeoxyuridine (FdU) to inhibit endogenous thymidine (dT) synthesis. By using different [BrdU]: [dT] ratios in the presence of FdU the relative incorporation of BrdU into replicating DNA can be controlled.The use of 2 different approaches to obtain 3-way differentiation of sister chromatids allowed us to evaluate the role of BrdU in the induction of SCEs in our system. Both procedures rendered nearly 100% of M3 chromosomes showing TWD. An additional advantage of our methodologies is their high degree of reproducibility.  相似文献   

13.
The multistep nature of cancer development provides a rationale for cancer prevention. Activation of oncogenes, inactivation of tumor suppressor genes and modulation of mitogenic signal transduction pathways are critical in cancer progression and present attractive targets for cancer prevention/intervention. In this respect, cell cycle regulation and its modulation by various natural (plant-derived) and synthetic agents are gaining widespread attention in recent years. A number of phytochemicals inhibit cell cycle progression in cancer cells, yet their clinical applications are still in infancy. The present review is focused on the modulatory effects of phytochemicals on critical cell cycle molecules, and discusses how they inhibit proliferation and/or induce apoptotic death in cancer cells.  相似文献   

14.
The multinucleated plasmodia ofPhysarum polycephalum, a myxomycete, have been extensively used in cell cycle studies. The natural synchrony of mitosis and DNA synthesis, easy culture methods, the ready fusions obtainable between plasmodia, and the amenability to phase specific studies, employing physical and chemical perturbers, are some of the attractive features of this organism. Because of the absence of a Gl phase in the plasmodia, there is a crowding of cell cycle specific marker events at the G2/M boundary, which reflect features of both the G2/M and the Gl/S boundaries of a typical eukaryotic cell. Prominent among these are the synthesis and overall activity of thymidine kinase, the co-triggering of tubulin and histone genes, translation of their mRNA, the organization and duplication of the microtubular organizing centres of the mitotic spindle and the triggering of cdc 2 kinase activity. These above events have not only served as good markers to monitor the progress of the plasmodial cell cycle, but have also been fairly thoroughly analysed by means of specific perturbers such as DNA synthesis inhibitors, antimicrotubular drugs, UV-irradiation, heat-shock etc. Along with fusion studies, these perturbation studies have been helpful in the formulation of various models on regulation of mitosis. These above aspects as well as prospects for future studies employing this organism are discussed This paper is dedicated to the memory of the late Prof. S C K Nair, formerly University Professor of Physics.  相似文献   

15.
The review surveys the studies of molecular genetic mechanisms of the cell cycle control on various eukaryotic models. The major cell cycle phenomena are considered: (1) checkpoints and their role in preserving DNA integrity and fidelity of mitosis, (2) the cell oscillator model, and (3) the role of cyclins in timing of cell division and coordination of mitotic events. The main classes of regulatory proteins involved in the cell cycle are discussed in detail.  相似文献   

16.
17.
Regulation of multiple cell cycle events by Cdc14 homologues in vertebrates   总被引:1,自引:0,他引:1  
Whereas early cytokinesis events have been relatively well studied, little is known about its final stage, abscission. The Cdc14 phosphatase is involved in the regulation of multiple cell cycle events, and in all systems studied Cdc14 misexpression leads to cytokinesis defects. In this work, we have cloned two CDC14 cDNA from Xenopus, including a previously unreported CDC14B homologue. We use Xenopus and human cell lines and demonstrate that localization of Cdc14 proteins is independent of both cell-type and species specificity. Ectopically expressed XCdc14A is centrosomal in interphase and localizes to the midbody in cytokinesis. By using XCdc14A misregulation, we confirm its control over different cell cycle events and unravel new functions during abscission. XCdc14A regulates the G1/S and G2/M transitions. We show that Cdc25 is an in vitro substrate for XCdc14A and might be its target at the G2/M transition. Upregulated wild-type or phosphatase-dead XCdc14A arrest cells in a late stage of cytokinesis, connected by thin cytoplasmic bridges. It does not interfere with central spindle formation, nor with the relocalization of passenger protein and centralspindlin complexes to the midbody. We demonstrate that XCdc14A upregulation prevents targeting of exocyst and SNARE complexes to the midbody, both essential for abscission to occur.  相似文献   

18.
Y Asato 《Journal of bacteriology》1983,153(3):1315-1321
Synchronized cultures of Anacystis nidulans (Synechococcus PCC 6301), an obligate phototroph, are obtained by incubating exponential cultures in the dark for 12 to 16 h. A temporal and sequential order of macromolecular synthesis is observed within the cell division cycle of a synchronously dividing culture in the light. Apparently, dark incubation causes the cells to realign their cellular activities in such a way that all cells emerge from the dark and grow synchronously in the light. A study was conducted to explore the possible mechanisms responsible for the putative dark-induction process. Samples were taken at various times from a synchronized culture and were subjected to another round of dark incubation for 16 h. When these cultures were returned to the light, the cell number increased from 3 h and doubled at about 7 h. The protein, RNA, and DNA contents started to increase in order well before 3 h. This general pattern of cellular activities, observed for nearly all samples (i.e., for cells of different physiological ages), indicated that the dark incubation period caused the ongoing cell cycle to abort and a new cell cycle to be reinitiated under light growth conditions.  相似文献   

19.
The nucleolus is a subnuclear compartment, which governs ribosome biogenesis. Moreover, it functions as hub in the stress response by orchestrating a variety of processes, such as regulation of cell cycle progression, senescence and apoptosis. Emerging evidence links the nucleolus also to the control of genomic stability and the development of human malignancies. Peter Pan (PPAN) is an essential ribosome biogenesis factor localized to nucleoli and mitochondria. We earlier showed that PPAN depletion triggers p53-independent nucleolar stress and apoptosis. In this study we investigated the precise localization of nucleolar PPAN during cell cycle and its function in cell cycle regulation. We show that PPAN knockdown impairs cell proliferation and induces G0/G1 as well as later G2/M cell cycle arrest in cancer cells. Although PPAN knockdown stabilizes the tumor suppressor p53 and induces CDKN1A/p21, the proliferation defects occur largely in a p53/p21-independent manner. We noticed a reduced number of knockdown cells entering cytokinesis and an elevation of binucleation. PPAN knockdown is also associated with increased H2A.X phosphorylation (γH2A.X) in cancer cells. We evaluated a potential signaling axis through the DNA damage response kinases ATM and ATR and alternatively apoptosis as a potent driver of γH2A.X. Interestingly, PPAN knockdown does not involve activation of ATM/ATR. Instead, γH2A.X is generated as a consequence of apoptosis induction in cancer cells. Strikingly, PPAN depletion in human fibroblasts did neither provoke apoptosis nor H2A.X phosphorylation, but recapitulated p53 stabilization. In summary, our data underline the notion that the PPAN-mediated, p53-independent nucleolar stress response has multiple facets.  相似文献   

20.
Many imprinted genes are often epigenetically affected in human cancers due to their functional linkage to insulin and insulin-like growth factor signaling pathways. Thus, the current study systematically characterized the epigenetic instability of imprinted genes in multiple human cancers. First, the survey results from TCGA (The Cancer Genome Atlas) revealed that the expression levels of the majority of imprinted genes are downregulated in primary tumors compared to normal cells. These changes are also accompanied by DNA methylation level changes in several imprinted domains, such as the PEG3, MEST and GNAS domains. Second, these DNA methylation level changes were further confirmed manually using several sets of cancer DNA. According to the results, the Imprinting Control Regions of the PEG3, MEST and GNAS domains are indeed affected in breast, lung and ovarian cancers. This DNA methylation survey also revealed that evolutionarily conserved cis-regulatory elements within these imprinted domains are very variable in both normal and cancer cells. Overall, this study highlights the epigenetic instability of imprinted domains in human cancers and further suggests its potential use as cancer biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号