首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Although the availability of oral contraceptives and the development of improved intrauterine contraceptive devices have greatly increased the general utilization of family planning services, there are still great segments of our population which are not yet reached, especially in the economically deprived areas. Since over 98 percent of all obstetrical deliveries now occur in hospitals, it seems logical that it is on hospital maternity services that these deficiencies might often be best overcome. Although this is primarily a medical problem, the use of paramedical personnel can greatly augment the physician''s practice in these areas. Family planning services should be an integral part of comprehensive maternity care, not alone in the physician''s office but also in the hospital setting.  相似文献   

3.
4.
Great progress has been made in the last 5 yr in demonstrating the presence of benzodiazepines (BDZs) in mammalian tissues, in beginning studies on the origin of these natural compounds, and in elucidating their possible biological roles. Many unanswered questions remain regarding the sources and biosynthetic pathways responsible for the presence of BDZs in brain and their different physiological and/or biochemical actions. This essay will focus on recent findings supporting that: (1) BDZs are of natural origin; (2) mammalian brain contains BDZs in concentrations ranging between 5.10−10–10−8 M; (3) dietary source of BDZs might be a plausible explanation for their occurrence in animal tissues, including man; (4) the formation of BDZ-like molecules in brain is a possibility, experimentally supported; (5) BDZ-like molecules including diazepam andN-desmethyldiazepam are elevated in hepatic encephalopathy; and (6) natural BDZs in the brain are involved in the modulation of memory processes. Future studies using the full range of biochemical, physiological, behavioral, and molecular biological techniques available to the neuroscientist will hopefully continue to yield exciting and new information concerning the biological roles that BDZs might play in the normal and pathological functioning of the brain.  相似文献   

5.
6.
PPARs in the brain   总被引:3,自引:0,他引:3  
The biology of peroxisome proliferator activated receptors (PPARs) in physiological and pathophysiological processes has been primarily studied in peripherial organs and tissues. Recently it became clear that PPARs play an important role for the pathogenesis of various disorders of the CNS. The finding that activation of PPARs, and in particular, the PPARgamma isoform, suppresses inflammation in peripherial macrophages and in models of human autoimmune disease, instigated the experimental evaluation of these salutary actions for several CNS disorders that have an inflammatory component. Activation of all PPAR isoforms, but especially of PPARgamma, has been found to be protective in murine in vitro and in vivo models of Multiple Sclerosis. The verification of these findings in human cells prompted the initiation of clinical studies evaluating PPARgamma activation in Multiple Sclerosis patients. Likewise, Alzheimer's disease has a prominent inflammatory component that arises in response to neurodegeneration and to extracellular deposition of beta-amyloid peptides. The fact that non steroidal anti-inflammatory drugs (NSAIDs) delay the onset and reduce the risk to develop Alzheimer's disease, while they also bind to and activate PPARgamma, led to the hypothesis that one dimension of NSAID protection in AD may be mediated by PPARgamma. Several lines of evidence from in vitro and in vivo studies have supported this hypothesis, using Alzheimer disease related transgenic cellular and animal models. The ability of PPAR agonists to elicit anti-amyloidogenic, anti-inflammatory and insulin sensitizing effects may account for the observed effects. A number of clinical trials employing PPAR agonists have yielded promising results and further trials are in preparation, which aim to delineate the exact mechanism of interaction. Animal models of other neurodegenerative diseases such as Parkinson's and Amyotrophic lateral sclerosis, both associated with a considerable degree of CNS inflammation, have been studied with a positive outcome. Yet it is not clear whether reduction of inflammation or additional mechanisms account for the observed neuroprotection. Less is known about the physiological role of PPARs for brain development, maintenance and function. Lesions from transgenic mouse models, however, provide evidence that PPARs may play pivotal roles for CNS development and function.  相似文献   

7.
8.
9.
10.
11.
Selenium and selenoproteins in the brain and brain diseases   总被引:11,自引:0,他引:11  
Over the past three decades, selenium has been intensively investigated as an antioxidant trace element. It is widely distributed throughout the body, but is particularly well maintained in the brain, even upon prolonged dietary selenium deficiency. Changes in selenium concentration in blood and brain have been reported in Alzheimer's disease and brain tumors. The functions of selenium are believed to be carried out by selenoproteins, in which selenium is specifically incorporated as the amino acid, selenocysteine. Several selenoproteins are expressed in brain, but many questions remain about their roles in neuronal function. Glutathione peroxidase has been localized in glial cells, and its expression is increased surrounding the damaged area in Parkinson's disease and occlusive cerebrovascular disease, consistent with its protective role against oxidative damage. Selenoprotein P has been reported to possess antioxidant activities and the ability to promote neuronal cell survival. Recent studies in cell culture and gene knockout models support a function for selenoprotein P in delivery of selenium to the brain. mRNAs for other selenoproteins, including selenoprotein W, thioredoxin reductases, 15-kDa selenoprotein and type 2 iodothyronine deiodinase, are also detected in the brain. Future research directions will surely unravel the important functions of this class of proteins in the brain.  相似文献   

12.
13.
14.
1 PrefaceFutainNatureReserveformangroveandbirdsisonepartoftheGuangdongNeilingdingandFutianNatureReserve,whichwassetupinOctober1984.Today,becauseofthecitydevelopmentplanning,FutainNatureReservehasbeenexpandedfrom304~360hm2,anditscentreshiftswestwardsa…  相似文献   

15.
福田自然保护区规划的研究   总被引:1,自引:0,他引:1  
王勇军 《生态科学》1999,18(3):24-26
1 Preface Futain Nature Reserve for mangrove and birds is one part of the Guangdong Neilingding and Futian Nature Reserve,which was set up in October 1984.  相似文献   

16.
17.
The authors studies the effects of blood serum and IgG fraction from dogs immunized with brain and blood sera from patients with multiple sclerosis and schizophrenia on lipid peroxidation in rat brain homogenates. Measured the content of diene conjugates (DC) and malonic dialdehyde (MDA) in the rat brain after administering the IgG fraction. It was established that antioxidant activity of blood sera and IgG fraction from control animals and donors was significantly higher as compared to experimental. Administration of the IgG fraction brought about an increase in the content of DC and MDA in the brain of experimental animals. It is concluded that complement-dependent brain antibodies present in the blood serum of patients with schizophrenia and multiple sclerosis potentiate lipid peroxidation in the cerebral tissue and that the unsophisticated and informative method for antibody determination may be used in clinical practice.  相似文献   

18.
It has been recently established that in various brain regions D-serine, the product of serine racemase, occupies the so-called 'glycine site' within N-methyl D-aspartate receptors. Mammalian brain serine racemase is a pyridoxal-5' phosphate-containing enzyme that catalyzes the racemization of L-serine to D-serine. It has also been shown to catalyze the alpha,beta-elimination of water from L-serine or D-serine to form pyruvate and ammonia. Serine racemase is included within the group of type II-fold pyridoxal-5' phosphate enzymes, together with many other racemases and dehydratases. Serine racemase was first purified from rat brain homogenates and later recombinantly expressed in mammalian and insect cells as well as in Escherichia coli. It has been shown that serine racemase is activated by divalent cations like calcium, magnesium and manganese, as well as by nucleotides like ATP, ADP or GTP. In turn, serine racemase is also strongly inhibited by reagents that react with free sulfhydryl groups such as glutathione. Several yeast two-hybrid screens for interaction partners identified the proteins glutamate receptor interacting protein, protein interacting with C kinase 1 and Golga3 to bind to serine racemase, having different effects on its catalytic activity or stability. In addition, it has also been proposed that serine racemase is regulated by phosphorylation. Thus, d-serine production in the brain is tightly regulated by various factors pointing at its physiologic importance. In this minireview, we will focus on the regulation of brain serine racemase and d-serine synthesis by the factors mentioned above.  相似文献   

19.
20.
Jia X  Kohn A 《PLoS biology》2011,9(4):e1001045
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号