首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most Down's syndrome (DS) patients develop Alzheimer's disease (AD) neuropathology. Astrocyte and neuronal cultures derived from fetal DS brain show alterations in the processing of amyloid beta precursor protein (AbetaPP), including increased levels of AbetaPP and C99, reduced levels of secreted AbetaPP (AbetaPPs) and C83, and intracellular accumulation of insoluble Abeta42. This pattern of AbetaPP processing is recapitulated in normal astrocytes by inhibition of mitochondrial metabolism, consistent with impaired mitochondrial function in DS astrocytes. Intracellular Abeta42 and reduced AbetaPPs are also detected in DS and AD brains. The survival of DS neurons is markedly increased by recombinant or astrocyte-produced AbetaPPs, suggesting that AbetaPPs may be a neuronal survival factor. Thus, mitochondrial dysfunction in DS may lead to intracellular deposition of Abeta42, reduced levels of AbetaPPs, and a chronic state of increased neuronal vulnerability.  相似文献   

2.
A critical role for mitochondrial dysfunction has been proposed in the pathogenesis of Down's syndrome (DS), a human multifactorial disorder caused by trisomy of chromosome 21, associated with mental retardation and early neurodegeneration. Previous studies from our group demonstrated in DS cells a decreased capacity of the mitochondrial ATP production system and overproduction of reactive oxygen species (ROS) in mitochondria. In this study we have tested the potential of epigallocatechin-3-gallate (EGCG) – a natural polyphenol component of green tea – to counteract the mitochondrial energy deficit found in DS cells. We found that EGCG, incubated with cultured lymphoblasts and fibroblasts from DS subjects, rescued mitochondrial complex I and ATP synthase catalytic activities, restored oxidative phosphorylation efficiency and counteracted oxidative stress. These effects were associated with EGCG-induced promotion of PKA activity, related to increased cellular levels of cAMP and PKA-dependent phosphorylation of the NDUFS4 subunit of complex I. In addition, EGCG strongly promoted mitochondrial biogenesis in DS cells, as associated with increase in Sirt1-dependent PGC-1α deacetylation, NRF-1 and T-FAM protein levels and mitochondrial DNA content.In conclusion, this study shows that EGCG is a promoting effector of oxidative phosphorylation and mitochondrial biogenesis in DS cells, acting through modulation of the cAMP/PKA- and sirtuin-dependent pathways. EGCG treatment promises thus to be a therapeutic approach to counteract mitochondrial energy deficit and oxidative stress in DS.  相似文献   

3.
4.
Down’s syndrome (DS) is a developmental disorder associated with intellectual disability (ID). We have previously shown that people with DS engage in very low levels of exercise compared to people with ID not due to DS. Many aspects of the DS phenotype, such as dementia, low activity levels and poor muscle tone, are shared with disorders of mitochondrial origin, and mitochondrial dysfunction has been demonstrated in cultured DS tissue. We undertook a phosphorus magnetic resonance spectroscopy (31P-MRS) study in the quadriceps muscle of 14 people with DS and 11 non-DS ID controls to investigate the post-exercise resynthesis kinetics of phosphocreatine (PCr), which relies on mitochondrial respiratory function and yields a measure of muscle mitochondrial function in vivo. We found that the PCr recovery rate constant was significantly decreased in adults with DS compared to non-DS ID controls (1.7±0.1 min−1 vs 2.1±0.1 min−1 respectively) who were matched for physical activity levels, indicating that muscle mitochondrial function in vivo is impaired in DS. This is the first study to investigate mitochondrial function in vivo in DS using 31P-MRS. Our study is consistent with previous in vitro studies, supporting a theory of a global mitochondrial defect in DS.  相似文献   

5.
Hospitalized children with severe malnutrition face high mortality rates and often suffer from hepatic and intestinal dysfunction, with negative impacts on their survival. New treatments cannot be developed without understanding the underlying pathophysiology. We have established and characterized translational organoid models of severe malnutrition of the liver and the intestine. In these models, amino acid starvation recapitulates the expected organ-specific functional changes (e.g., hepatic steatosis, barrier dysfunction) accompanied by reduced mitochondrial and peroxisomal proteins, and altered intestinal tight junction proteins. Re-supplementation of amino acids or pharmacological interventions with rapamycin or fenofibrate lead to partial recovery. Restoration of protein levels aligned with signs of improved peroxisomal function in both organoids, and increased mitochondrial proteins and tight junction protein claudin-3 in intestinal organoids. We present two organoid models as novel tools to gain mechanistic insights and to act as a testing platform for potential treatments for intestinal and hepatic dysfunction in severe malnutrition.  相似文献   

6.
7.
Recent studies on developing three-dimensional (3D) brain organoids from stem cells have allowed the generation of in vitro models of neural disease and have enabled the screening of drugs because these organoids mimic the complexity of neural tissue. Niemann-Pick disease, type C (NPC) is a neurodegenerative lysosomal storage disorder caused by mutations in the NPC1 or NPC2. The pathological features underlying NPC are characterized by the abnormal accumulation of cholesterol in acidic compartments, including late endosomes and lysosomes. Due to the inaccessibility of brain tissues from human NPC patients, we developed NPC brain organoids with induced neural stem cells from NPC patient-derived fibroblasts. NPC organoids exhibit significantly reduced size and proliferative ability, which are accompanied by accumulation of cholesterol, impairment in neuronal differentiation, and autophagic flux and dysfunction of lysosomes; therefore, NPC organoids can recapitulate the main phenotypes of NPC patients. Furthermore, these pathological phenotypes observed in NPC organoids were reversed by treatment with valproic acid and HPBCD, which are known to be an effective treatment for several neurodegenerative diseases. Our data present patient-specific phenotypes in 3D organoid-based models of NPC and highlight the application of this model to drug screening in vitro.Subject terms: Disease model, Lipid-storage diseases, Neural stem cells  相似文献   

8.
The electron-microscopic examinations of lymphocytes and neutrophiles in circulating blood of children irradiated during intrauterine development and on posterior stages of ontogenesis were performed in dynamics after accidental period. Some changes in lymphocyte ultrastructure were revealed; namely the increased undulation of nuclear contours with dilated perinuclear space and some reconstructions of their cellular organoids (the increased density of mitochondrial matrix, crist disorganization, dilation of clear space in cisterns of cytoplasmic net, disorders in the structure of electron-dense granules). The peculiarities of neutrophile ultrastructure that are characterized by centre dilated perinuclear space, decrease in glycosomes, disorders in granular structure, vacuole presence, degradation of cytoplasm and nuclear hypersegmentation were determined.  相似文献   

9.
DS (Down's syndrome) is the most common human aneuploidy associated with mental retardation and early neurodegeneration. Mitochondrial dysfunction has emerged as a crucial factor in the pathogenesis of numerous neurological disorders including DS, but the cause of mitochondrial damage remains elusive. In the present study, we identified new molecular events involved in mitochondrial dysfunction which could play a role in DS pathogenesis. We analysed mitochondrial respiratory chain function in DS-HSFs (Down's syndrome human foetal skin fibroblasts; human foetal skin fibroblasts with chromosome 21 trisomy) and found a selective deficit in the catalytic efficiency of mitochondrial complex I. The complex I deficit was associated with a decrease in cAMP-dependent phosphorylation of the 18 kDa subunit of the complex, due to a decrease in PKA (protein kinase A) activity related to reduced basal levels of cAMP. Consistently, exposure of DS-HSFs to db-cAMP (dibutyryl-cAMP), a membrane-permeable cAMP analogue, stimulated PKA activity and consequently rescued the deficit of both the cAMP-dependent phosphorylation and the catalytic activity of complex I; conversely H89, a specific PKA inhibitor, suppressed these cAMP-dependent activations. Furthermore, in the present paper we report a 3-fold increase in cellular levels of ROS (reactive oxygen species), in particular superoxide anion, mainly produced by DS-HSF mitochondria. ROS accumulation was prevented by db-cAMP-dependent activation of complex I, suggesting its involvement in ROS production. Taken together, the results of the present study suggest that the drastic decrease in basal cAMP levels observed in DS-HSFs participates in the complex I deficit and overproduction of ROS by DS-HSF mitochondria.  相似文献   

10.
Neither the pathogenesis nor the aetiology of Down's syndrome (DS) are clearly understood. Numerous studies have examined whether clinical features of DS are a consequence of specific chromosome 21 segments being triplicated. There is no evidence, however, that individual loci are responsible, or that the oxidative damage in DS could be solely explained by a gene dosage effect. Using astrocytes and neuronal cultures from DS fetuses, a recent paper shows that altered metabolism of the amyloid precursor protein and oxidative stress result from mitochondrial dysfunction.1 These findings are consistent with considerable data implicating the role of the mitochondrial genome in DS pathogenesis and aetiology.  相似文献   

11.
Patient‐derived human organoids can be used to model a variety of diseases. Recently, we described conditions for long‐term expansion of human airway organoids (AOs) directly from healthy individuals and patients. Here, we first optimize differentiation of AOs towards ciliated cells. After differentiation of the AOs towards ciliated cells, these can be studied for weeks. When returned to expansion conditions, the organoids readily resume their growth. We apply this condition to AOs established from nasal inferior turbinate brush samples of patients suffering from primary ciliary dyskinesia (PCD), a pulmonary disease caused by dysfunction of the motile cilia in the airways. Patient‐specific differences in ciliary beating are observed and are in agreement with the patients'' genetic mutations. More detailed organoid ciliary phenotypes can thus be documented in addition to the standard diagnostic procedure. Additionally, using genetic editing tools, we show that a patient‐specific mutation can be repaired. This study demonstrates the utility of organoid technology for investigating hereditary airway diseases such as PCD.  相似文献   

12.
We characterized a 24-kDa protein associated with matrix hsp70 (mt-hsp70) of Neurospora crassa and Saccharomyces cerevisiae mitochondria. By using specific antibodies, the protein was identified as MGE, a mitochondrial homolog of the prokaryotic heat shock protein GrpE. MGE extracted from mitochondria was quantitatively bound to hsp70. It was efficiently released from hsp70 by the addition of Mg-ATP but not by nonhydrolyzable ATP analogs or high salt. A mutant mt-hsp70, which was impaired in release of bound precursor proteins, released MGE in an ATP-dependent manner, indicating that precursor proteins and MGE bind to different sites of hsp70. A preprotein accumulated in transit across the mitochondrial membranes was specifically coprecipitated by either antibodies directed against MGE or antibodies directed against mt-hsp70. The preprotein accumulated at the outer membrane was not coprecipitated by either antibody preparation. After being imported into the matrix, the preprotein could be coprecipitated only by antibodies against mt-hsp70. We propose that mt-hsp70 and MGE cooperate in membrane translocation of preproteins.  相似文献   

13.
Misfolded human islet amyloid polypeptide (hIAPP) in pancreatic islets is associated with the loss of insulin-secreting beta cells in type 2 diabetes. Insulin secretion impairment and cell apoptosis can be due to mitochondrial dysfunction in pancreatic beta cells. Currently, there is little information about the effect of hIAPP on mitochondrial function. In this study, we used INS-1E rat insulinoma beta cells as a model to investigate the role of mitochondria in hIAPP-induced apoptosis and the protective effects of phycocyanin (PC). We demonstrated that hIAPP induced apoptosis in INS-1E cells was associated with the disruption of mitochondrial function, as evidenced by ATP depletion, mitochondrial mass reduction, mitochondrial fragmentation and loss of mitochondrial membrane potential (ΔΨ(m)). Further molecular analysis showed that hIAPP induced changes in the expression of Bcl-2 family members, release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria into cytosol, activation of caspases and cleavage of poly (ADP-ribose) polymerase. Interestingly, the hIAPP-induced mitochondrial dysfunction in INS-1E cells was effectively restored by co-treatment of PC. Moreover, there was crosstalk between the extrinsic and intrinsic apoptotic pathways as demonstrated by cleavage of Bid by caspase-8 in the apoptotic process triggered by hIAPP. Taken together, we demonstrated for the first time the involvement of mitochondrial dysfunction in hIAPP-induced INS-1E cell apoptosis. Attenuation of mitochondrial dysfunction provides a mechanism for the protective effects of PC.  相似文献   

14.
Hepatitis C Virus (HCV) induces intracellular events that trigger mitochondrial dysfunction and promote host metabolic alterations. Here, we investigated selective autophagic degradation of mitochondria (mitophagy) in HCV-infected cells. HCV infection stimulated Parkin and PINK1 gene expression, induced perinuclear clustering of mitochondria, and promoted mitochondrial translocation of Parkin, an initial event in mitophagy. Liver tissues from chronic HCV patients also exhibited notable levels of Parkin induction. Using multiple strategies involving confocal and electron microscopy, we demonstrated that HCV-infected cells display greater number of mitophagosomes and mitophagolysosomes compared to uninfected cells. HCV-induced mitophagy was evidenced by the colocalization of LC3 puncta with Parkin-associated mitochondria and lysosomes. Ultrastructural analysis by electron microscopy and immunoelectron microscopy also displayed engulfment of damaged mitochondria in double membrane vesicles in HCV-infected cells. The HCV-induced mitophagy occurred irrespective of genotypic differences. Silencing Parkin and PINK1 hindered HCV replication suggesting the functional relevance of mitophagy in HCV propagation. HCV-mediated decline of mitochondrial complex I enzyme activity was rescued by chemical inhibition of mitophagy or by Parkin silencing. Overall our results suggest that HCV induces Parkin-dependent mitophagy, which may have significant contribution in mitochondrial liver injury associated with chronic hepatitis C.  相似文献   

15.
To assess the developmental potential of nuclear transfer embryos in cattle using mammary gland epithelial (MGE) cells derived from the colostrum, we compared the effectiveness of cloning using those cells and fibroblast cells derived from the ear. The fusion rate of the enucleated oocytes with fibroblast cells (75 +/- 4%) was significantly higher than that with MGE cells (56 +/- 7%, P<0.05). There were no significant differences in the cleavage rate (85 +/- 3% vs. 91+/- 2%) or in the developmental rate to the blastocyst stage (35 +/- 6% vs. 35 +/- 5%) using MGE cells vs. fibroblast cells as donor nuclei (P>0.05). After transfer of blastocysts derived from nuclear transfer embryos produced using MGE cells and fibroblast cells, 13% (4/31) and 16% (6/37) of recipient heifers were pregnant on Day 42 as assessed by ultrasonography, respectively. Two of the 4 and 4 of the 6 recipients of embryos with MGE cell- and fibroblast cell-derived nuclei, respectively, aborted within 150 days of pregnancy. Four live female calves were obtained from MGE cells or fibroblast cells. However, one died from internal hemorrhage of the arteria umbilicalis. The other three calves were normal and healthy. There were no differences in the pregnancy rate or calving rate when using MGE cells vs. fibroblast cells. Microsatellite DNA analyses confirmed that the cloned calves were genetically identical to the donor cows and different from the recipient heifers. We conclude that colostrum-derived MGE cells have the developmental potential to term by nuclear transfer, and the efficiency of development of those cloned embryos was the same as that of embryos obtained using fibroblast cells as donor nuclei, although there was a significant difference in the fusion rate. This method using MGE cells derived from colostrum, which is obtained easily and safely from live adult cows, is more advantageous for cloning with somatic cells.  相似文献   

16.
Vascular calcification is prevalent in patients with chronic kidney disease and leads to increased cardiovascular morbidity and mortality. Although several reports have implicated mitochondrial dysfunction in cardiovascular disease and chronic kidney disease, little is known about the potential role of mitochondrial dysfunction in the process of vascular calcification. This study investigated the effect of α-lipoic acid (ALA), a naturally occurring antioxidant that improves mitochondrial function, on vascular calcification in vitro and in vivo. Calcifying vascular smooth muscle cells (VSMCs) treated with inorganic phosphate (Pi) exhibited mitochondrial dysfunction, as demonstrated by decreased mitochondrial membrane potential and ATP production, the disruption of mitochondrial structural integrity and concurrently increased production of reactive oxygen species. These Pi-induced functional and structural mitochondrial defects were accompanied by mitochondria-dependent apoptotic events, including release of cytochrome c from the mitochondria into the cytosol, subsequent activation of caspase-9 and -3, and chromosomal DNA fragmentation. Intriguingly, ALA blocked the Pi-induced VSMC apoptosis and calcification by recovery of mitochondrial function and intracellular redox status. Moreover, ALA inhibited Pi-induced down-regulation of cell survival signals through the binding of growth arrest-specific gene 6 (Gas6) to its cognate receptor Axl and subsequent Akt activation, resulting in increased survival and decreased apoptosis. Finally, ALA significantly ameliorated vitamin D(3) -induced aortic calcification and mitochondrial damage in mice. Collectively, the findings suggest ALA attenuates vascular calcification by inhibiting VSMC apoptosis through two distinct mechanisms; preservation of mitochondrial function via its antioxidant potential and restoration of the Gas6/Axl/Akt survival pathway.  相似文献   

17.
Mitochondrial dysfunction has been associated with Parkinson's disease. However, the role of mitochondrial defects in the formation of Lewy bodies, a pathological hallmark of Parkinson's disease has not been addressed directly. In this report, we investigated the effects of inhibitors of the mitochondrial electron-transport chain on the aggregation of alpha-synuclein, a major protein component of Lewy bodies. Treatment with rotenone, an inhibitor of complex I, resulted in an increase of detergent-resistant alpha-synuclein aggregates and a reduction in ATP level. Another inhibitor of the electron-transport chain, oligomycin, also showed temporal correlation between the formation of aggregates and ATP reduction. Microscopic analyses showed a progressive evolution of small aggregates of alpha-synuclein to a large perinuclear inclusion body. The inclusions were co-stained with ubiquitin, 20 S proteasome, gamma-tubulin, and vimentin. The perinuclear inclusion bodies, but not the small cytoplasmic aggregates, were thioflavin S-positive, suggesting the amyloid-like conformation. Interestingly, the aggregates disappeared when the cells were replenished with inhibitor-free medium. Disappearance of aggregates coincided with the recovery of mitochondrial metabolism and was partially inhibited by proteasome inhibitors. These results suggest that the formation of alpha-synuclein inclusions could be initiated by an impaired mitochondrial function and be reversed by restoring normal mitochondrial metabolism.  相似文献   

18.
The aim of this study was to investigate the changes in hepatic oxidative phosphorylation (OXPHOS) complexes (COs) in patients and cows with non‐alcoholic steatohepatitis (NASH) and to investigate the mechanism that links mitochondrial dysfunction and hepatic insulin resistance induced by non‐esterified fatty acids (NEFAs). Patients and cows with NASH displayed high blood NEFAs, TNF‐α and IL‐6 concentrations, mitochondrial dysfunction and insulin resistance. The protein levels of peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α), mitofusin‐2 (Mfn‐2) and OXPHOS complexes (human: COI and COIII; cow: COI‐IV) were significantly decreased in patients and cows with NASH. NEFA treatment significantly impaired mitochondrial function and, increased reactive oxygen species (ROS) production, and excessive ROS overactivated the JNK and p38MAPK pathways and induced insulin resistance in cow hepatocytes. PGC‐1α and Mfn‐2 overexpression significantly decreased the NEFA‐induced ROS production and TNF‐α and IL‐6 mRNA expressions, reversed the inhibitory effect of NEFAs on mitochondrial function and attenuated the overactivation of the ROS‐JNK/p38MAPK pathway, alleviated insulin resistance induced by NEFAs in cow hepatocytes and HepG2 cells. These findings indicate that NEFAs induce mitochondrial dysfunction and insulin resistance mediated by the ROS‐JNK/p38MAPK pathway. PGC‐1α or Mfn‐2 overexpression reversed the lipotoxicity of NEFAs on mitochondrial dysfunction and insulin resistance. Our study clarified the mechanism that links hepatic mitochondrial dysfunction and insulin resistance in NASH.  相似文献   

19.
Abstract

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare disorder caused by mutations in the thymidine phosphorylase gene (TYMP), leading to secondary aberrations to the mitochondrial genome. The disease is characterised by gastrointestinal dysmotility, sensorimotor peripheral neuropathy and leukoencephalopathy. The understanding of the molecular mechanisms that underlie the central nervous system (CNS) is hindered by the lack of a representative disease model; to address this we have developed an in vitro 3-D cerebral organoid of MNGIE. Induced pluripotent stem cells (iPSCs) generated from peripheral blood mononuclear cells (PBMCs) of a healthy control and a patient with MNGIE were characterised to ascertain bona fide pluripotency through the evaluation of pluripotency markers and the differentiation to the germ layers. iPSC lines were differentiated into cerebral organoids. Thymidine phosphorylase expression in PBMCs, iPSCs and Day 92 organoids was evaluated by immunoblotting and intact organoids were sampled for histological evaluation of neural markers. iPSCs demonstrated the expression of pluripotency markers SOX2 and TRA1-60 and the plasticity to differentiate into the germ layers. Cerebral organoids stained positive for the neural markers GFAP, O4, Tuj1, Nestin, SOX2 and MBP. Consistent with the disease phenotypes, MNGIE cells did not display thymidine phosphorylase expression whereas control PBMCs and Day 92 organoids did. Remarkably, control iPSCs did not stain positive for thymidine phosphorylase. We have established for the first time a MNGIE iPSC line and cerebral organoid model, which exhibited the expression of cells relevant to the study of the disease, such as neural stem cells, astrocytes and myelinating oligodendrocytes.  相似文献   

20.
Oxidative stress is one of the factors that could explain the pathophysiological mechanism of inflammatory conditions that occur in cardiovascular disease (CVD) and periodontitis. Such inflammatory response is often evoked by specific bacteria, as the lipopolysaccharide (LPS) of Porphyromonas gingivalis is a key factor in this process. The aim of this research was to study the role of mitochondrial dysfunction in peripheral blood mononuclear cells (PBMCs) from periodontitis patients and to evaluate the influence of LPS on fibroblasts to better understand the pathophysiology of periodontitis and its relationship with CVD. PBMCs from patients showed lower CoQ10 levels and citrate synthase activity, together with high levels of ROS production. LPS-treated fibroblasts provoked increased oxidative stress and mitochondrial dysfunction by a decrease in mitochondrial protein expression, mitochondrial mass, and mitochondrial membrane potential. Our study supports the hypothesis that LPS-mediated mitochondrial dysfunction could be at the origin of oxidative stress in periodontal patients. Abnormal PBMC performance may promote oxidative stress and alter cytokine homeostasis. In conclusion, mitochondrial dysfunction could represent a possible link to understanding the interrelationships between two prominent inflammatory diseases: periodontitis and CVD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号