首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The B-box (BBX) -containing proteins are a class of zinc finger proteins that contain one or two B-box domains and play important roles in plant growth and development. The Arabidopsis BBX gene family has recently been re-identified and renamed. However, there has not been a genome-wide survey of the rice BBX (OsBBX) gene family until now.

Methodology/Principal Findings

In this study, we identified 30 rice BBX genes through a comprehensive bioinformatics analysis. Each gene was assigned a uniform nomenclature. We described the chromosome localizations, gene structures, protein domains, phylogenetic relationship, whole life-cycle expression profile and diurnal expression patterns of the OsBBX family members. Based on the phylogeny and domain constitution, the OsBBX gene family was classified into five subfamilies. The gene duplication analysis revealed that only chromosomal segmental duplication contributed to the expansion of the OsBBX gene family. The expression profile of the OsBBX genes was analyzed by Affymetrix GeneChip microarrays throughout the entire life-cycle of rice cultivar Zhenshan 97 (ZS97). In addition, microarray analysis was performed to obtain the expression patterns of these genes under light/dark conditions and after three phytohormone treatments. This analysis revealed that the expression patterns of the OsBBX genes could be classified into eight groups. Eight genes were regulated under the light/dark treatments, and eleven genes showed differential expression under at least one phytohormone treatment. Moreover, we verified the diurnal expression of the OsBBX genes using the data obtained from the Diurnal Project and qPCR analysis, and the results indicated that many of these genes had a diurnal expression pattern.

Conclusions/Significance

The combination of the genome-wide identification and the expression and diurnal analysis of the OsBBX gene family should facilitate additional functional studies of the OsBBX genes.  相似文献   

2.
《Genomics》2020,112(2):1622-1632
Flowering is a prerequisite for pear fruit production. Therefore, the development of flower buds and the control of flowering time are important for pear trees. However, the molecular mechanism of pear flowering is unclear. SOC1, a member of MADS-box family, is known as a flowering signal integrator in Arabidopsis. We identified eight SOC1-like genes in Pyrus bretschneideri and analyzed their basic information and expression patterns. Some pear SOC1-like genes were regulated by photoperiod in leaves. Moreover, the expression patterns were diverse during the development of pear flower buds. Two members of the pear SOC1-like genes, PbSOC1d and PbSOC1g, could lead to early flowering phenotype when overexpressed in Arabidopsis. PbSOC1d and PbSOC1g were identified as activators of the floral meristem identity genes AtAP1 and AtLFY and promote flowering time. These results suggest that PbSOC1d and PbSOC1g are promoters of flowering time and may be involved in flower bud development in pear.  相似文献   

3.
Wang  Ling  Xue  Jingyi  Dai  Weina  Tang  Yujin  Gong  Peijie  Wang  Yuejin  Zhang  Chaohong 《Journal of Plant Growth Regulation》2019,38(2):631-643

The CONSTANS (CO) gene plays an important role in the flowering of plants. However, the other precise roles of the CO gene are poorly understood. We carried out a genomic census and analysis of expression patterns for CONSTANS-like genes in Vitis vinifera (VviCOLs) to reveal the molecular characteristics of VviCOLs. Twelve VviCOLs were identified and 11 of their full-length complementary DNAs were cloned. Multiple sequence alignment suggested the VviCOLs contained B-box and CCT conserved domains. We further classified the VviCOLs into three groups according to the variability of the second B-box domain. Synteny analysis showed that eight orthologous gene pairs were identified between grapevine and Arabidopsis, suggesting that eight pairs may descend from a common evolutionary ancestor. Tissue expression analysis of COL genes in cv. Pinot Noir showed VviCOL11a and VviCOL11b were specifically expressed in flower bud, whereas VviCOL16b was only expressed in leaves. Ten VviCOLs were expressed in the developing ovule and six of them showed higher expression in the ovule of cv. Thompson Seedless than that of cv. Pinot Noir, indicating that VviCOLs were involved in the process of seed development or ovule abortion. Furthermore, nine of twelve VviCOLs were expressed in cv. Pinot Noir leaves and all of these nine genes had a response to exogenous hormone application. In summary, our findings provide a new insight into the further studies of VviCOLs, especially in terms of seed development and hormone response.

  相似文献   

4.
5.
6.
The floral transition is controlled by diverse endogenous and exogenous cues. In many species, COL (CONSTANS-like) genes integrate light and circadian clock signals to regulate flowering time. However, little is known about COLs in perennial woody plants. Here, we identified 15 PbCOLs in pear (Pyrus bretschneideri). PbCOLs were classified into three groups by phylogenetic tree analysis using protein sequences. Multiple sequence alignment analysis revealed conserved B-box and CCT (CO, CO-like, and TOC1) domains in all PbCOL members. This result suggested that PbCOLs might possess conserved functions as other species. Six PbCOLs were found to be regulated by both circadian clock and photoperiod. Here, we showed that PbCOL8, a member of group 2, suppressed the flowering signal integrators FT and SOC1 and could repress flowering time. These findings will contribute to elucidation of the mechanism of floral initiation in pear.  相似文献   

7.
采用实地观测的方法,对南充市金城山三个不同生境中柔毛淫羊藿的开花物候特征及其生殖特性进行了研究。结果表明:柔毛淫羊藿花期为3月上旬至4月上旬,其种群、个体、花序和单花的花期分别历时30~41、22~34、9~18和4~8 d。三个生境中柔毛淫羊藿种群的开花物候进程基本相同,均呈单峰集中开花式样,因而能够吸引更多的传粉者访问而达到生殖成功。开花物候指数与坐果数之间的相关分析结果表明,坐果数与始花日期存在显著的负相关关系,与花期持续时间和开花数均呈极显著的正相关关系。揭示了药用植物柔毛淫羊藿的开花物候特征与生殖特性。  相似文献   

8.
A LEAFY/FLORICAULA (LFY/FLO) homolog PpLFL (P runus p ersica L EAFY/ F LORICAULA L ike) gene was isolated from axillary buds of peach (Prunus persica (L.) Batsch. cv. Bayuecui) during flower induction period. The open reading frame of PpLFL spanned 1,248 bp, encoding a putative protein of 415 amino acid residues, which was with high similarity (50.48 %–84.69 %) to other FLO/LFY inferred proteins from different species. The spatial expression patterns of PpLFL were detected in axillary buds during the periods of flower induction by using immunohistolocalisation. The results showed that PpLFL gene was mainly expressed during flower induction time, and also in leaf and petal promordia at the SAM. For further functional analysis, the PpLFL was constitutively expressed in the Arabidopsis lfy mutant background, and the results showed that overexpression of PpLFL under the control of CaMV 35S promoter can accelerate flowering and give rise to normal flower organs. Our results suggest that PpLFL might play an important role in flower induction, and could act as a functional flower meristem identity gene in peach.  相似文献   

9.
The recently sequenced pineapple genome was used to identify and analyze some of the key gene families involved in carbohydrate biosynthesis, breakdown and modification. Gene products were grouped into glycosyltransferases (GT), glycoside hydrolases (GH), carbohydrate esterases (CE), and polysaccharide lyases (PL) based upon predicted catalytic activity. Non-catalytic carbohydrate-binding modules (CBM) and enzymes involved in lignification were also identified. The pineapple genes were compared with those from two and five monocot and eudicots species, respectively. The complement of pineapple sugar and cell wall metabolism genes is similar to that found in rice and sorghum, though the numbers of GTs and GHs is often fewer. This applies to a lesser extent to the genes involved in nucleotide-sugar interconversion, with both pineapple and papaya having a minimum complement. Interestingly, pineapple does not appear to contain mixed linkage β-glucan in its walls while possessing cellulose synthase-like (Csl), J and H genes. Pineapple and papaya have less than half the number of GT1 genes involved in small molecule glycosylation compared to Arabidopsis and tomato, and fewer members in GH families than Arabidopsis. The ratio of rice and sorghum to pineapple genes in GH families was more variable than in the case of GTs and it is unclear why pineapple GH gene numbers are so low. Rice, sorghum and pineapple have far fewer CE8, PL1 and GH28 genes related to pectin metabolism than most eudicots. The general lower number of cell wall genes in pineapple possibly reflects the absence of a genome duplication event. The data also suggests that pineapple straddles the boundary between grasses (family Poaceae) and eudicots in terms of genes involved in carbohydrate metabolism, which is also reflected in its cell wall composition.  相似文献   

10.
11.
The protein encoded by the FLOWERING LOCUS T (FT) gene from Arabidopsis thaliana seems to be the long-searched florigen, and over-expression of FT orthologues resulted in accelerated flower development in annual and perennial plants. In the present study, we isolated two allelic mRNA sequences of an FT-homologous gene from apple, which was designated as MdFT1. Using a SSR motif this gene was mapped on LG 12 of apple. Over-expression of MdFT1 in Arabidopsis and the commercially important tree species poplar and apple itself using the CaMV 35S or the Arabidopsis Suc2 promoter resulted in significant accelerated flowering compared with wild-type plants. Transgenic T0 plants of Arabidopsis flowered 4–6 days on average earlier than wild-type Arabidopsis under LD conditions. Under short-day conditions Suc2::MdFT1 plants of the T1-generation flowered after 66 ± 18 days, while wild-type plants flowered about 22 days later. All transgenic Arabidopsis plants showed a normal habit except for the early flowering phenotype. Early flowering was detected 6–10 months after transformation in transgenic polar clones containing MdFT1 driven by the CaMV 35S, whereas plants of the transgenic apple clone T780 set up its first flowers during in vitro cultivation. Based on our results we conclude that MdFT1 is responsible for inducing flowering and that the function of the apple FT1 gene is conserved in annual herbaceous species as well as perennial woody species. Furthermore, we discuss the role of MdFT1 in flower development with regard to the findings of genetic studies on apple.  相似文献   

12.
13.
14.
15.
The red coloration of pear (Pyrus pyrifolia) results from anthocyanin accumulation in the fruit peel. Light is required for anthocyanin biosynthesis in pear. A pear homolog of Arabidopsis thaliana BBX22, PpBBX16, was differentially expressed after fruits were removed from bags and may be involved in anthocyanin biosynthesis. Here, the expression and function of PpBBX16 were analysed. PpBBX16's expression was highly induced by white‐light irradiation, as was anthocyanin accumulation. PpBBX16's ectopic expression in Arabidopsis increased anthocyanin biosynthesis in the hypocotyls and tops of flower stalks. PpBBX16 was localized in the nucleus and showed trans‐activity in yeast cells. Although PpBBX16 could not directly bind to the promoter of PpMYB10 or PpCHS in yeast one‐hybrid assays, the complex of PpBBX16/PpHY5 strongly trans‐activated anthocyanin pathway genes in tobacco. PpBBX16's overexpression in pear calli enhanced the red coloration during light treatments. Additionally, PpBBX16's transient overexpression in pear peel increased anthocyanin accumulation, while virus‐induced gene silencing of PpBBX16 decreased anthocyanin accumulation. The expression patterns of pear BBX family members were analysed, and six additional BBX genes, which were differentially expressed during light‐induced anthocyanin biosynthesis, were identified. Thus, PpBBX16 is a positive regulator of light‐induced anthocyanin accumulation, but it could not directly induce the expression of the anthocyanin biosynthesis‐related genes by itself but needed PpHY5 to gain full function. Our work uncovered regulatory modes for PpBBX16 and suggested the potential functions of other pear BBX genes in the regulation of anthocyanin accumulation, thereby providing target genes for further studies on anthocyanin biosynthesis.  相似文献   

16.
植物MADS-box基因家族编码高度保守的转录因子,参与了包括花器官发育和开花在内的多种发育进程。为阐释兰科植物成花的分子调控机制,根据MADS-box基因保守序列设计简并引物,用RACE方法从朵丽蝶兰花葶中克隆到1个MADS-box家族基因,该基因cDNA全长960 bp,包含37 bp 5′UTR,一个738 bp的开放阅读框(ORF)和185 bp 3′UTR,共编码245个氨基酸。序列和系统进化树分析表明,该基因与其他植物的MADS-box基因具有很高的同源性,属于AP1/FUL-like亚家族,命名为DtpsMADS1,GeneBank登录号为JQ065097。实时荧光定量PCR检测结果显示:DtpsMADS1具有明显的组织表达特异性;在根和叶中,DtpsMADS1在花前期和花后期表达量较高;苗期和盛花期表达量较低;DtpsMADS1在花葶中的表达趋势与根和叶相似;而在花器官中,DtpsMADS1只有痕量表达。由此推断,DtpsMADS1可能参与开花进程调控,而不参与花器官的形态建成。  相似文献   

17.
Numerous CCT domain genes are known to control flowering in plants. They belong to the CONSTANS-like (COL) and PREUDORESPONSE REGULATOR (PRR) gene families, which in addition to a CCT domain possess B-box or response-regulator domains, respectively. Ghd7 is the most recently identified COL gene to have a proven role in the control of flowering time in the Poaceae. However, as it lacks B-box domains, its inclusion within the COL gene family, technically, is incorrect. Here, we show Ghd7 belongs to a larger family of previously uncharacterized Poaceae genes which possess just a single CCT domain, termed here CCT MOTIF FAMILY (CMF) genes. We molecularly describe the CMF (and related COL and PRR) gene families in four sequenced Poaceae species, as well as in the draft genome assembly of barley (Hordeum vulgare). Genetic mapping of the ten barley CMF genes identified, as well as twelve previously unmapped HvCOL and HvPRR genes, finds the majority map to colinear positions relative to their Poaceae orthologues. Combined inter-/intra-species comparative and phylogenetic analysis of CMF, COL and PRR gene families indicates they evolved prior to the monocot/dicot divergence ∼200 mya, with Poaceae CMF evolution described as the interplay between whole genome duplication in the ancestral cereal, and subsequent clade-specific mutation, deletion and duplication events. Given the proven role of CMF genes in the modulation of cereals flowering, the molecular, phylogenetic and comparative analysis of the Poaceae CMF, COL and PRR gene families presented here provides the foundation from which functional investigation can be undertaken.  相似文献   

18.
Yellow-flowering species are unique in the genus Camellia not only for their bright yellow pigments but also the health-improving substances in petals. However, little is known regarding the biosynthesis pathways of pigments and secondary metabolites. Here, we performed comparative genomics studies in two yellow-flowered species of the genus Camellia with distinctive flowering periods. We obtained 112,190 and 89,609 unigenes from Camellia nitidissima and Camellia chuongtsoensis, respectively, and identified 9547 gene family clusters shared with various plant species and 3414 single-copy gene families. Global gene expression analysis revealed six comparisons of differentially expressed gene sets in different developmental stages of floral bud. Through the identification of orthologous pairs, conserved and specific differentially expressed genes (DEGs) between species were compared. Functional enrichment analysis suggested that the gibberellin (GA) biosynthesis pathway might be related to the alteration of flowering responses. Furthermore, the expression patterns of secondary metabolism pathway genes were analyzed between yellow- and red-flowered Camellias. We showed that the key enzymes involved in glycosylation of flavonoids displayed differential expression patterns, indicating that the direct glycosylation of flavonols rather than anthocyanins was pivotal to coloration and health-improving metabolites in the yellow Camellia petals. Finally, the gene family analysis of UDP-glycosyltransferases revealed an expansion of group C members in C. nitidissima. Through comparative genomics analysis, we demonstrate that changes of gene expression and gene family members are critical to the variation of natural traits. This work provides valuable insights into the molecular regulation of trait adaptations of floral pigmentation and flowering timing.  相似文献   

19.
20.
SPL(SQUAMOSA-promoter binding protein-like)是植物特有的基因家族,在花发育过程中具有重要调控作用。该研究以桂花全基因组数据为基础,对SPL基因家族成员的蛋白理化性质、系统进化、基因结构和不同组织的表达模式进行生物信息学分析,筛选出花组织中较高表达的基因进行实时荧光定量、亚细胞定位及酵母自激活验证,为解析SPL基因参与调控桂花花朵开放过程中的作用机制和功能提供基因资源。结果显示:(1)共鉴定出29个桂花SPL基因家族成员,它们均具有SBP结构域,且不均匀分布在15条染色体上。(2)与拟南芥构建系统进化树,聚类可分为8大亚群,同亚群的OfSPL基因具有高度相似的基因结构。(3)RNA-seq数据分析表明,OfSPL9/10/17/19/21/27/28整体FPKM值较高,在花组织中具有一定的特异性;qRT-PCR分析表明,OfSPL10/21在花朵开放过程中的相对表达量呈先升后降的趋势。(4)亚细胞定位和转录自激活活性分析显示,OfSPL10/21编码蛋白主要定位于细胞核上,不具有转录自激活活性。研究推测,OfSPL10/21可能参与调控桂花花色与...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号