共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent evidence for activity-dependent initiation of sympathetic sprouting and neuropathic pain 总被引:1,自引:0,他引:1
Traumatic injury or inflammatory irritation of the peripheral nervous system often leads to persistent pathophysiological pain states. It has been well-documented that, after peripheral nerve injury or inflammation, functional and anatomical alterations sweep over the entire peripheral nervous system including the peripheral nerve endings, the injured or inflamed afferent fibers, the dorsal root ganglion (DRG), and the central afferent terminals in the spinal cord. Among all the changes, ectopic discharge or spontaneous activity of primary sensory neurons is of great clinical interest, as such discharges doubtless contribute to the develop-ment of pathological pain states such as neuropathic pain. Two key sources of abnormal spontaneous activity have been identified following peripheral nerve injury: the injured afferent fibers (neuroma) leading to the DRG, and the DRG somata. The purpose of this review is to provide a global account of the abnormal spontaneous activity in various animal models of pain. Particular attention is focused on the consequence of peripheral nerve injury and localized inflammation. Further, mechanisms involved in the generation of spontaneous activity are also reviewed; evidence of spontaneous activity in contributing to abnormal sympathetic sprouting in the axotomized DRG and to the initiation of neuropathic pain based on new findings from our research group are discussed. An improved understanding of the causes of spontaneous activity and the origins of neuropathic pain should facilitate the development of novel strategies for effective treatment of pathological pain. 相似文献
2.
Jean Guibourdenche Charlotte Djakour Dominique Porquet Patrick Pagsy Ccile Rochette-Egly Franoise Peillon Jacques Yuan Li Danile Evain-Brion 《Journal of cellular biochemistry》1997,65(1):25-31
In order to gain a better understanding on the possible role of retinoic acid (RA) on human GH secretion, we have characterized the expression of its nuclear receptors in somatotropic adenoma cell extracts. By immunoblotting with rabbit polyclonal antibodies directed against RARα, β, and γ and RXRα and β, we could only detect the presence of RARα and RXRα proteins. The predominant expression of RXRα was confirmed at the mRNA level by Northern and slot-blot analysis. When then investigated the effect of RA on GH synthesis in cell culture of adenomatous somatotrophs. In cultured cells, RA (1 μM) stimulated GH secretion, increased intracellular GH content and GH mRNA levels within 72 h, suggesting a modulation of GH synthesis by RA. J. Cell. Biochem 65:25–31. © 1997 Wiley-Liss, Inc. 相似文献
3.
Anxiolytic effects of hippocampal neurosteroids in normal and neuropathic rats with spared nerve injury 下载免费PDF全文
Meng Zhang Jia Liu Meng‐Meng Zhou Honghai Wu Yanning Hou Yun‐Feng Li Yuxin Yin Lemin Zheng Jie Cai Fei‐Fei Liao Feng‐Yu Liu Ming Yi You Wan 《Journal of neurochemistry》2017,141(1):137-150
4.
5.
《Journal of receptor and signal transduction research》2013,33(5):378-385
AbstractAll-trans-retinoic acid (ATRA) can regulate some specific genes expression in various tissue and cells via nuclear retinoic acid receptors (RARs), including three subtypes: retinoic acid receptor-alpha (RAR-α), retinoic acid receptor-beta (RAR-β) and retinoic acid receptor-gamma (RAR-γ). Podocyte injury plays a pivotal role in the progression of glomerulosclerosis (GS). This study was performed to study the potential signal pathway of ATRA in the expression of matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9) in injury podocyte. Cells were divided into three groups: group of negative control (NC), group of injury podocyte induced by adriamycin (ADR) (AI) and group of ADR inducing podocyte injury model treated with ATRA (AA). The cells morphology changes were detected using microscope and scanning electron microscopy. MMP-2 and MMP-9 enzymic activity was detected using the gelatin zymography method. Protein and mRNA expressions of MMP-2, MMP-9, RAR-α, RAR-β and RAR-γ were measured by western-blot and real-time RT-PCR. Enzymatic activity of MMP-2 and MMP-9 in group AA was significantly enhanced compared to AI group after ATRA-treated 24?h (p?<?0.05). The protein and mRNA expressions of MMP-2/MMP-9 in group AA were significantly increased than those in group AI at both 12 and 24?h time points (p?<?0.05). Compared to group AI, RAR-α and RAR-γ protein/mRNA expressions of group AA were significantly increased at both 12 and 24?h time points (p?<?0.05). There was no difference for the expression of RAR-β between group AI and group AA (p?>?0.05). RAR-α protein level was positively correlated with MMP-2 or MMP-9 protein expression (p?<?0.05), and RAR-γ protein level was also positively correlated with MMP-2 or MMP-9 protein expression (p?<?0.05). In conclusion, ATRA may increase expression of MMP-2 and MMP-9 by the potential signal pathway of RAR-α and RAR-γ in injury podocyte induced by adriamycin, but not RAR-β. 相似文献
6.
7.
各种疾病引起的神经系统的损伤或功能障碍致使全球数以百万计的人们患有神经性病理性疼痛。目前的方法对神经病理性疼痛的疗效不佳且有副作用,需要开发有效的治疗方法。近年来人们逐渐认识到,脊髓中胶质细胞(如小胶质细胞和星形胶质细胞)能通过释放强效的神经调质,如促炎细胞因子和趋化因子,在神经性病理性疼痛的产生和维持中起重要作用。近期的证据显示,趋化因子是疼痛调控中的新成员。该文综述了一些趋化因子和受体(如CCL2/CCR2、CXCL1/CXCR2、CX3CL1/CX3CR1、CCL21/CXCR3)作为神经元和胶质细胞相互调控的介质参与神经病理性疼痛的调节。靶向趋化因子介导的神经炎症反应将成为治疗神经病理性疼痛的新方向。 相似文献
8.
9.
Simpson Richard K. Gondo Margaret Robertson Claudia S. Goodman J. Clay 《Neurochemical research》1997,22(1):75-79
We have previously shown in animal models that enhanced segmental glycine release is produced by neuroaugmentation techniques commonly used to control pain in humans. Our current hypothesis is that glycine administered intrathecally reduces the pain response evoked by the hotplate analgesia meter method. Neuropathic rats created by unilateral partial ligation of the sciatic nerve were treated with intrathecal infusion of glycine, strychnine, MK-801, or 5–7 DKA at 0.1 mol for 2 hours at a rate of 10 l/min. Time required for limb withdrawal at 42°C was significantly increased after glycine administration but not altered by strychnine, a specific glycine receptor antagonist. Administration of the NMDA receptor antagonist, MK-801, blocked the influence of glycine, with a less obvious antagonistic response from 5,7 DKA. Our results provide evidence that glycine and related compounds significantly modify thermal hyperalgesia, and may operate primarily through the NMDA receptor complex. 相似文献
10.
Nathan M. Bass 《Molecular and cellular biochemistry》1993,123(1-2):191-202
The cellular fatty acid-binding proteins (FABP) and cellular retinoid (retinol, retinoic acid)-binding proteins (CRtBP) are structurally and functionally-defined groups within an evolutionarily conserved gene family. CRtBP are expressed in both fully differentiated and developing tissues in a manner that supports a relationship to the action of retinoic acid in morphogenesis and cellular differentiation. The FABP are, by contrast, expressed only in fully differentiated tissues in a manner compatible with a major function in the metabolism of long-chain fatty acids (LCFA) for energy production or storage. The precise function(s) of FABP and CRtBP remain imperfectly understood, while subspecialization of function(s) within the two groups is suggested by the complex diversity in both of structurally distinct members that display striking tissue and temporal specificity of expression in addition to ligand specificity. Notwithstanding this considerable apparent functional diversity among the FABP and CRtBP, available evidence supports a dual set of generic functions for both protein groups in a) promoting cellular flux of poorly water-soluble ligands and their subsequent metabolic utilization or transformation, and b) sequestration of ligands in a manner that limits their association with alternative binding sites within the cell, of which members of the steroid hormone nuclear receptor superfamily (HNR) are a potentially important category. Theoretical as well as experimental models probing diffusional fluxes of LCFAin vitro and in living cells have provided support for a function for FABP in intracellular LCFA transport. Protein-bound ligand also appears to provide the substrate for metabolic transformation of retinoids bound to CRtBP, but convincing evidence is lacking for an analogous mechanism in the direct facilitation of fatty acid utilization by FABP. An emerging relationship between FABP and CRtBP function centers on their binding of, and induction by, ligands which activate or transform specific HNR-the retinoic acid receptors and the peroxisome proliferator activated receptor in the case of CRtBP and FABP, respectively. Evidence consistent with both a promotive role (provision of ligands for HNR) and a protective role (limiting availability of free ligand for HNR association) has been advanced for CRtBP. Available data supports a protective function for cellular retinoic acid-binding proteins (CRABP) and liver FABP (L-FABP) and points to the existence of ligand-defined, lipid-binding-protein-HNR relationships in which CRABP serve to attenuate the induction of gene expression by retinoic acid, and in which L-FABP may modulate a cellular adaptive multigene response to increased LCFA flux or compromised LCFA utilization. Furthermore, the emerging role of LCFA in the regulation of gene expression combined with the complex interplay between heterologous HNR-ligand associations and gene cross-regulation implies an important potential interaction between FABP, CRtBP, and their respective ligands in gene regulation.Abbreviations A-FABP
Adipocyte Fatty Acid-Binding Protein
- CRABP
Cellular Retinoic Acid-Binding Protein(s)
- CRABP I
Cellular Retinoic Acid-Binding Protein type I
- CRABP II
Cellular Retinoic Acid-Binding Protein type II
- CRBP
Cellular Retinol-Binding Protein(s)
- CRBP
Cellular Retinol-Binding Protein typy I
- CRBP II
Cellular Retinol-Binding Protein type II
- CRtBP
Cellular Retinoid-Binding Proteins
- FABP
Fatty Acid-Binding Protein
- H-FABP
Heart Fatty Acid-Binding Protein
- HNR
steroid Hormone-type Nuclear Receptor
- I-FABP
Intestinal Fatty Acid-Binding Protein
- LCFA
Long-Chain Fatty Acids
- L-FABP
Liver Fatty Acid-Binding Protein
- NBD-stearate
12-(N-methyl)-N-(7-nitrobenzo-2-oxa-1,3,-diazol-4-yl)amino)-octadecanoic acid
- PPAR
Peroxisome Proliferator-Activated Receptor
- RAR
Retinoic Acid Receptor(s)
- RARE
Retinoic Acid Response Element
- RXR
Retinoic acid X Receptors(s)
- RXRE
Retinoic acid X Response Element 相似文献
11.
Painful neuropathy is one of the most serious complications of diabetes and remains difficult to treat. The muscarinic acetylcholine receptor (mAChR) agonists have a profound analgesic effect on painful diabetic neuropathy. Here we determined changes in T-type and high voltage-activated Ca(2+) channels (HVACCs) and their regulation by mAChRs in dorsal root ganglion (DRG) neurons in a rat model of diabetic neuropathy. The HVACC currents in large neurons, T-type currents in medium and large neurons, the percentage of small DRG neurons with T-type currents, and the Cav3.2 mRNA level were significantly increased in diabetic rats compared with those in control rats. The mAChR agonist oxotremorine-M significantly inhibited HVACCs in a greater proportion of DRG neurons with and without T-type currents in diabetic than in control rats. In contrast, oxotremorine-M had no effect on HVACCs in small and large neurons with T-type currents and in most medium neurons with T-type currents from control rats. The M(2) and M(4) antagonist himbacine abolished the effect of oxotremorine-M on HVACCs in both groups. The selective M(4) antagonist muscarinic toxin-3 caused a greater attenuation of the effect of oxotremorine-M on HVACCs in small and medium DRG neurons in diabetic than in control rats. Additionally, the mRNA and protein levels of M(4), but not M(2), in the DRG were significantly greater in diabetic than in control rats. Our findings suggest that diabetic neuropathy potentiates the activity of T-type and HVACCs in primary sensory neurons. M(4) mAChRs are up-regulated in DRG neurons and probably account for increased muscarinic analgesic effects in diabetic neuropathic pain. 相似文献
12.
Tom Rouwette Luca Avenali Julia Sondermann Pratibha Narayanan David Gomez-Varela Manuela Schmidt 《Channels (Austin, Tex.)》2015,9(4):175-185
In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles. 相似文献
13.
《Channels (Austin, Tex.)》2013,7(4):175-185
In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles. 相似文献
14.
15.
急性神经损伤引起脊髓背角C-纤维诱发电位长时程增强 总被引:10,自引:0,他引:10
神经损伤引起神经病性疼痛,表现为持续性痛超敏和痛觉过敏。目前对神经病性疼痛的机制尚缺乏了解。我们以往的工作表明强直电刺激坐骨神经可引起脊髓背角C-纤维诱发电位的长时程增强(long-term potentiation,LTP),该LTP被认为是病理性疼痛的突触模型。本研究的目的在于探讨急性神经损伤是否能在完整动物的脊髓背角诱发出C-纤维诱发电位LTP。在以测试刺激(10~20V,0.5ms)电刺激坐骨神经的同时在脊髓背角用微电极记录C一纤维诱发电位。分别用强直刺激、剪断或夹捏坐骨神经诱导LTP。结果发现:(1)剪断或夹捏坐骨神经都可以诱导脊髓背角C-纤维诱发电位的LTP,该LTP可持续到实验结束(3~9h),在剪断神经前10min用利多卡因局部阻滞坐骨神经则可完全阻断LTP的产生;(2)神经损伤诱导的LTP可被NMDA受体阻断剂AP5所阻断;(3)用单次强直刺激引起LTP后,切断坐骨神经可使LTP的幅度进一步增大,而用多次强直电刺激使LTP饱和后,损伤神经则不能使LTP进一步增大。切断神经引起LTP后,强直电刺激也不能使LTP进一步增大。这些结果表明,急性神经损伤可以诱导脊髓背角C纤维诱发电位LTP,且切断神经能更有效地诱导LTP。该试验进一步支持我们的设想,即脊髓背角C-纤维诱发电位LTP可能在病理性疼痛的形成中起重要作用。 相似文献
16.
Van B. Lu S. Balasubramanyan J. E. Biggs M. J. Stebbing S. L. Gustafson K. Todd A. Lai D. Dawbarn W. F. Colmers K. Ballanyi P. A. Smith 《Neurophysiology》2007,39(4-5):272-283
Chronic constriction injury (CCI) of the rat sciatic nerve increases the dorsal horn excitability. This “central sensitization”
leads to behavioral manifestations analogous to those related to human neuropathic pain. We found, using whole-cell recording
from acutely isolated spinal cord slices, that 7-to 10-day-long CCI increases excitatory synaptic drive to putative excitatory
“delay”-firing neurons in the substantia gelatinosa but attenuates that to putative inhibitory “tonic”-firing neurons. A defined-medium organotypic culture (DMOTC) system was
used to investigate the long-term actions of brain-derived neurotrophic factor (BDNF) as a possible instigator of these changes.
When all five neuronal types found in the substantia gelatinosa were considered, BDNF and CCI produced similar patterns, or “footprints,” of changes across the whole population. This pattern
was not seen with another putative “pain mediator,” interleukin 1β. Thus, BDNF decreased synaptic drive to “tonic” neurons
and increased synaptic drive to “delay” neurons. Actions of BDNF on “delay” neurons were presynaptic and involved increased
mEPSC frequency and amplitude without changes in the function of postsynaptic AMPA receptors. By contrast, BDNF exerted both
pre-and post-synaptic actions on “ tonic” cells to reduce the mEPSC frequency and amplitude. These differential actions of
BDNF on excitatory and inhibitory neurons contributed to a global increase in the dorsal horn network excitability as assessed
by the amplitude of depolarization-induced increases in the intracellular [Ca2+]. Experiments with the BDNF-binding protein TrkB-d5 provided additional evidence for BDNF as a harbinger of neuropathic pain.
Thus, the cellular processes altered by BDNF likely contribute to “central sensitization” and hence to the onset of neuropathic
pain.
Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 315–326, July–October, 2007. 相似文献
17.
18.
19.
20.
Shannon N. Tansley Alexander H. Tuttle Neil Wu Sarasa Tohyama Kimberly Dossett Lindsay Gerstein Boram Ham Jean‐Sebastien Austin Susana G. Sotocinal Jeffrey S. Mogil 《Genes, Brain & Behavior》2019,18(1)
The potential influence of pain on social behavior in laboratory animals has rarely been evaluated. Using a new assay of social behavior, the tube co‐occupancy test (TCOT), we assess propinquity—the tendency to maintain close physical proximity—in mice exposed to pain using subcutaneous zymosan or spared nerve injury as noxious stimuli. Our previous experience with the TCOT showed that outbred mouse sibling dyads show higher levels of tube co‐occupancy than stranger dyads. We find here that long‐lasting pain from spared nerve injury given to both mice in the dyad abolishes this effect of familiarity, such that strangers also display high levels of propinquity. We performed a separate experiment to assess the effect on dominance behavior of nerve injury to one or both mice of a dyad in which relative dominance status had been previously established via the confrontation tube test. We find that neuropathic pain given only to the dominant mouse reverses the relationship in male but not female mice, such that the previously subordinate mouse becomes dominant. These observations bolster the scant but growing evidence that pain can robustly affect social behavior in animals. 相似文献