首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tobacco bacterial wilt, Ralstonia solanacearum, is an important disease affecting the root and stem. The disease causes extensive damage to flue-cured tobacco all over the word. Field trials were conducted in 2008 and 2009 at Longyan, Fujian Province, China, to evaluate garlic intercropping for enhancing the biological control of R. solanacearum in flue-cured tobacco fields. The results of the study demonstrate that tobacco bacterial wilt was clearly inhibited by intercropping garlic in 2008 and 2009. The appearance of the disease in intercropped fields was delayed for about 15 days. The total number of R. solanacearum in root system soils was significantly lower in intercropped fields than in monocultured fields in 2008. These numbers were between 138×104 and 161×104 cfu g–1 dry soil in intercropped fields. The corresponding values in monocultured fields were 357×104 cfu g–1 dry soil. The monetary value of tobacco leaves was obviously higher in intercropped fields than in monocultured ones. The per cent increase in monetary values in the intercropped fields was between 14 and 34%. Consequently, intercropping tobacco with garlic might be very useful for enhancing biological control of R. solanacearum in flue-cured tobacco fields.  相似文献   

2.
Although recent studies have established a significant regulatoryrole for abscisic acid (ABA) and ethylene response factor (ERF)proteins in plant pathogen resistance, it is not clear whetherand how ABA performs this role. Previously, it was reportedthat an ERF protein, TSRF1, activates the expression of GCCbox-containing genes and significantly enhances the resistanceto Ralstonia solanacearum in both tobacco and tomato plants.Here, it is reported that TSRF1-regulated pathogen resistanceis modified by ABA application. TSRF1 activates the expressionof ABA biosynthesis-related genes, resulting in the increaseof ABA biosynthesis, which further stimulates ethylene production.More interestingly, ABA application decreases, while the inhibitorof ABA biosynthesis fluridone increases, the TSRF1-enhancedresistance to R. solanacearum. This observation is further supportedby the finding that ABA and fluridone reversibly modify theability of TSRF1 to bind the ethylene-responsive GCC box, consequentlyaltering the expression of element-controlled genes. These resultstherefore establish that TSRF1-regulated resistance to R. solanacearumcan be modified in tobacco by ABA. Key words: Abscisic acid, ERF protein TSRF1, GCC box-containing genes, Ralstonia solanacearum, tobacco  相似文献   

3.
Ralstonia solanacearum is a harmful pathogen that causes severe wilt disease in several vegetables. In the present study, we identified R. solanacearum from wilt of papaya by 16S rRNA PCR amplification. Virulence ability of R. solanacearum was determined by amplification of approximately 1500 bp clear band of hrpB gene. Further, in-vitro seed germination assay showed that R. solanacearum reduced the germination rate up to 26.21%, 34% and 33.63% of cucumber, bottle guard and pumpkin seeds, respectively whereas shoot and root growth were also significantly decreased. Moreover, growth inhibition of R. solanacearum was recorded using antibacterial compound from medicinal plant and antagonistic B. subtilis. Petroleum ether root extract of Rauvolfia serpentina showed highest 22 ± 0.04 mm diameter of zone of inhibition where methanolic extract of Cymbopogon citratus and ethanolic extract of Lantana camara exhibited 20 ± 0.06 mm and 20 ± 0.01 mm zone of inhibition against R. solanacearum, respectively. In addition, bioactive compounds of B. subtilis inhibited R. solanacearum growth by generating 17 ± 0.09 mm zone of inhibition. To unveil the inhibition mechanism, we adopted chemical-protein interaction network and molecular docking approaches where we found that, rutin from C. citratus interacts with citrate (Si)-synthase and dihydrolipoyl dehydrogenase of R. solanacearum with binding affinity of −9.7 kcal/mol and −9.5 kcal/mol while quercetin from B. subtillis interacts with the essential protein F0F1 ATP synthase subunit alpha of the R. solancearum with binding affinity of −6.9 kcal/mol and inhibit the growth of R. solanacearum. Our study will give shed light on the development of eco-friendly biological control of wilt disease of papaya.  相似文献   

4.
Li  Shili  Xu  Chen  Wang  Jiao  Guo  Bing  Yang  Liang  Chen  Juanni  Ding  Wei 《Plant and Soil》2017,412(1-2):381-395
Aim

The secretion of allelochemicals from plant roots plays a key role in soil sickness and soil-borne disease. The goal of this study was to investigate the role of allelopathic chemicals in Ralstonia solanacearum-infected tobacco roots.

Methods

The organic acids investigated in the present study are major components of tobacco root exudates. Through a swarming assay, we assessed the chemotaxis and colonization of R. solanacearum in response to organic acids.

Results

Fumaric acid was detected, and the results showed that this acid could serve as a semiochemical for attracting R. solanacearum and inducing the formation of biofilms of this species. The results also revealed that cinnamic and myristic acids play significant roles on swarming motility and chemotaxis. In addition, cinnamic, myristic and fumaric acids could enhance the expression of chemotaxis- and motility-related genes in R. solanacearum cultured in minimal medium. Furthermore, these three acids promote R. solanacearum colonization and accelerate disease progression in tobacco.

Conclusion

Cinnamic, myristic and fumaric acids could serve as semiochemical attractants to induce the colonization and infection of R. solanacearum. The results of the present study enhance our understanding of the ecological effects of plant root exudates in plant-microbe interactions and help to reveal the relationship between tobacco bacterial wilt and the autotoxins and allelochemicals that accumulate from root exudates.

  相似文献   

5.
Pathogenesis-related proteins (PRs) are associated with the development of systemic acquired resistance (SAR) against further infection enforced by fungi, bacteria and viruses. PR1a is the first PR-1 member that could be purified and characterized. Previous studies have reported its role in plants’ resistance system against oomycete pathogens. However, the role of PR1a in Solanaceae plants against the bacterial wilt pathogen Ralstonia solanacearum remains unclear. To assess roles of NtPR1a in tobacco responding to R. solanacearum, we performed overexpression experiments in Yunyan 87 plants (a susceptible tobacco cultivar). The results illuminated that overexpression of NtPR1a contributed to improving resistance to R. solanacearum in tobacco Yunyan 87. Specifically speaking, NtPR1a gene could be induced by exogenous hormones like salicylic acid (SA) and pathogenic bacteria R. Solanacearum. Moreover, NtPR1a-overexpressing tobacco significantly reduced multiple of R. solanacearum and inhibited the development of disease symptoms compared with wild-type plants. Importantly, overexpression of NtPR1a activated a series of defense-related genes expression, including the hypersensitive response (HR)-associated genes NtHSR201 and NtHIN1, SA-, JA- and ET-associated genes NtPR2, NtCHN50, NtPR1b, NtEFE26, and Ntacc oxidase, and detoxification-associated gene NtGST1. In summary, our results suggested that NtPR1a-enhanced tobacco resistance to R. solanacearum may be mainly dependent on activation of the defense-related genes.  相似文献   

6.
Bacterial wilt, caused by Ralstonia solanacearum, is one of the most serious diseases of tomato (Solanum lycopersicum). Concomitant infection of R. solanacearum and root‐knot nematode Meloidogyne incognita increases the severity of bacterial wilt in tomato, but the role of this nematode in disease complexes involving bacterial pathogens is not completely elucidated. Although root wounding by root‐knot nematode infection seems to play an important role, it might not entirely explain the increased susceptibility of plants to R. solanacearum. In the present study, green fluorescent protein (GFP)‐labelled R. solanacearum distribution was observed in the root systems of the tomato cultivar Momotaro preinoculated with root‐knot nematode or mock‐inoculated with tap water. Fluorescence microscopy revealed that GFP‐labelled R. solanacearum mainly colonized root‐knot nematode galls, and little or no green fluorescence was observed in nematode‐uninfected roots. These results suggest that the gall induced by the nematode is a suitable location for the growth of R. solanacearum. Thus, it is crucial to control both R. solanacearum and root‐knot nematode in tomato production fields to reduce bacterial wilt disease incidence and effects.  相似文献   

7.
The comparative analysis of plant hormones was undertaken on a 1-naphthaleneacetic acid tolerant mutant and normal tobacco (Nicotiana tabacum cv Xanthi) plantlets. The mutant plantlet was scrubby and impaired in its root morphogenesis. Degeneration of the root meristem was studied on tissue sections; it appeared very fast (as early as the 3rd or 4th day after sowing), after which the root was further transformed into a callus. Indoleacetic acid (IAA), abscisic acid (ABA), and the isopentenyladenine (iP)- and trans-zeatin(Z)-type cytokinin levels were measured in terminal buds and root tips 13 days after sowing, by enzyme linked immunosorbent assay of high performance liquid chromatography fractions. Some differences appeared between the apical buds of the two genotypes, but the mutant tobacco differed from the wild type mainly by the presence of higher levels of IAA, ABA, and iP + isopentenyladenosine (iPA) in its small root. Thus, the IAA, ABA, and iP + iPA contents were increased by a factor of 15, 7, and 24 times, respectively, in mutant root compared to wild-type tobacco roots. Previous work has shown that the mutation impairs membrane polarization effects induced by auxin at the cell level. The present results would favor the hypothesis that the mutation has also affected the control of growth regulator accumulation in tissues.  相似文献   

8.
Bacterial wilt, caused by Ralstonia solanacearum , is responsible for severe losses in tomato crops in the world. In the present study, the effect of temperature, cultivars of tomato, injury of root system and inoculums load of R. solanacearum to cause bacterial wilt disease under control conditions was undertaken. Three strains UTT-25, HPT-3 and JHT-5 of R. solanacearum were grown at 5–40?°C in vitro to study, the effect of temperature on the growth of bacteria and maximum growth was found at 30?°C after 72?h in all the strains. Twenty-one days old seedlings of two cultivars of tomato i.e. N-5 (moderately resistant) and Pusa Ruby (highly susceptible) were transplanted into the pots and inoculated with R. solanacearum strain UTT-25 (5 × 108?cfu/ml), mechanically injured and uninjured roots of the plant. The plants were allowed to grow at 20, 25, 30 and 35?°C at National Phytotron Facility, IARI, New Delhi to study the effect of temperature on intensity of bacterial wilt disease. Maximum wilt disease intensity was found 98.73 and 95.9 % in injured roots of Pusa Ruby and N-5 cultivars of tomato at 35?°C on 11th days of inoculation, respectively. However, no wilt disease was observed in both the cultivars at 20?°C up to 60?days. For detection of R. solanacearum from asymptomatic tomato plants, hrpB-based sequence primers (Hrp_rs2F and Hrp_rs2R) amplified at 323?bp was used in bio-PCR to detect R. solanacearum from crown, mid part of stem and upper parts of the plant. Another experiment was conducted to find out the inoculum potential of R. solanacearum strain UTT-25 to cause bacterial wilt in susceptible cultivar Pusa Ruby. The bacteria were inoculated at concentration of bacterial suspension 10 to 1010?cfu/ml in injured and uninjured roots of the plants separately and injured root accelerated wilt incidence and able to cause wilt disease 63.3% by 100?cfu/ml of R. solanacearum, while no disease appeared at 10?cfu/ml on the 11th day of inoculation in injured and uninjured roots of the plant.  相似文献   

9.
10.
11.
Bacterial wilt caused by Ralstonia solanacearum is a serious threat for agricultural production in China. Eight soil bacterial isolates with activity against R. solanacearum TM15 (biovar 3) were tested in this study for their in vitro activity towards ten genetically diverse R. solanacearum isolates from China. The results indicated that each antagonist showed remarkable differences in its ability to in vitro antagonize the ten different R. solanacearum strains. Strain XY21 (based on 16S rRNA gene sequencing affiliated to Serratia) was selected for further studies based on its in vitro antagonistic activity and its excellent rhizocompetence on tomato plants. Under greenhouse conditions XY21 mediated biocontrol of tomato wilt caused by seven different R. solanacearum strains ranged from 19 to 70 %. The establishment of XY21 and its effects on the bacterial community in the tomato rhizosphere were monitored by denaturing gradient gel electrophoresis of 16S rRNA gene fragments PCR-amplified from total community DNA. A positive correlation of the in vitro antagonistic activities of XY21 and the actual biocontrol efficacies towards seven genetically different R. solanacearum strains was found and further confirmed by the efficacy of XY21 in controlling bacterial wilt under field conditions.  相似文献   

12.
13.
Bacillus strains are extensively studied for their beneficial role in plant growth and biological control of tomato bacterial wilt (TBW), however their underlying mechanisms remained unexplored. In this study, four rhizobacterial strains, Bacillus amyloliquefaciens D29, B. amyloliquefaciens Am1, B. subtilis D16 and B. methylotrophicus H8 were investigated for their antibacterial activity against (TBW) pathogen and their ability to stimulate Tomato growth. Results revealed that all four strains were able to form robust biofilm, produce Indole acetic acid (IAA) and siderophores, while only D29, Am1 and H8 have capability to solubilize phosphate. The culture filtrate of each strain significantly suppressed the growth and biofilm of Ralstonia solanacearum, where, the cell wall was severely disrupted, which resulted into cell lysis and subsequent leakage of intracellular cytosolic contents. PCR analysis revealed that all four strains are harboring the antimicrobial associated genes for biosynthesis of Bacyllomicin, Fengycin, Iturin, Surfactin and Bacylisin. Subsequent real-time qPCR analysis revealed that the expression of ituC and srfAA genes in Am1 and D16 was remarkably up-regulated during in vitro interaction with R. solanacearum. This suggest that the potential antibacterial and anti-biofilm related mechanisms are associated to their ability to secret the corresponding lipopeptides in surrounding niche. In greenhouse, a positive correlation (0.777 and 0.686) was noted between the IAA amount produced by Bacillus strains and fresh/dry weight of bacterized tomato plants. This the first report demonstrated the mode of antibacterial effect of Bacillus strains against R. solanacearum, moreover this study will help in understanding the mode of action of Bacillus strains during biological management of TBW and promoting the growth of tomato plants.  相似文献   

14.
15.
Ralstonia solanacearum is the causal agent of bacterial wilt disease. To better understand the molecular mechanisms involved in interaction between Nicotiana benthamiana and R. solanacearum, we focused on Hsp90, RAR1 and SGT1. Appearances of wilt symptom were significantly suppressed in Hsp90, RAR1 and SGT1-silenced plants compared with control plants. In RAR1-silenced plants, population of R. solanacearum increased in a similar manner to control plants. In contrast, multiplication of R. solanacearum was significantly suppressed in Hsp90 and SGT1-silenced plants. In addition, expression of PR genes were increased in Hsp90 and SGT1-silenced plants challenged with R. solanacearum. Therefore, RAR1 might be required for disease development or suppression of disease tolerance. These results also suggested that Hsp90 and/or SGT1 might play an important role in suppression of plant defenses leading to disease susceptibility and disease development.  相似文献   

16.
The antagonistic potential of 298 rhizobacteria obtained from the rhizosphere and rhizoplane of tomato and eucalyptus plants was assessed for the control of bacterial wilt of eucalyptus caused by Ralstonia solanacearum. Several tests were performed using tomato plants as a screening system to select efficient rhizobacteria. Different methods for antagonist delivery and pathogen inoculation were evaluated: (1) seeds were microbiolized (soaked for 12 h in a suspension of the antagonist propagules) and germinated seedlings had their roots immersed in the pathogen inoculum suspension; (2) seedlings originated from microbiolized seeds were transplanted to soil infested with R. solanacearum and (3) roots of seedlings were immersed in a suspension of propagules of the antagonist and subsequently in a suspension of R. solanacearum. Nine isolates (UFV-11, 32, 40, 56, 62, 101, 170, 229, and 270) were selected as potential antagonists to R. solanacearum as they suppressed bacterial wilt in at least one of the methods assessed. The selected antagonists were evaluated against two isolates of R. solanacearum using in vitro and in vivo (inoculated eucalyptus) tests. Isolates UFV-56 (Bacillus thuringiensis), UFV-62 (Bacillus cereus) and a commercial formulation of several rhizobacteria (Rizolyptus®) suppressed bacterial wilt in eucalyptus protecting the plants during the early stages of development.  相似文献   

17.
Bacterial wilt of tomato caused by Ralstonia solanacearum (Smith) Yabuuchi et al. (Microbiol Immunol 39:897–904, 1995) is a serious disease, which causes losses up to 60 % depending on environmental conditions, soil property, and cultivars. In present investigation, nucleotide sequences of virulence, hypersensitive response and pathogenicity (hrp) gene were used to design a pair of primer (Hrp_rs 2F: 5′-AGAGGTCGACGCGATACAGT-3′ and Hrp_rs 2R: 5′-CATGAGCAAGGACGAAGTCA-3′) for amplification of bacterial genome. The genomic DNA of 27 isolates of R. solanacearum race 1 biovar 3 & 4 was amplified at 323 bp. The specificity of primer was tested on 13 strains of R. solanacearum with other group of bacteria such as Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, and X. citri subsp. citri. Primer amplified DNA fragment of R. solanacearum at 323 bp. The sensitivity of the primer was 200 cfu/ml and improved further detection level by using non-specific enrichment medium casamino acids-pepton-glucose broth followed by PCR (BIO-PCR). Out of 130 samples of asymptomatic tomato plants, irrigation water, and soil collected from bacterial wilt infested field in different agro-climatic regions of India, R. solanacearum was detected from 86.9, 88.5, and 90.9 per cents samples using BIO-PCR, respectively. The primer was found specific for detecting viable and virulent strains of R. solanacearum and useful for the diagnosis of R. solanacearum in tomato seedlings and monitoring of pathogen in irrigation water and soil.  相似文献   

18.
Ralstonia solanacearum is a soil-borne phytopathogen associated with bacterial wilt disease of sesame. R. solanacearum is the predominant agent causing damping-off from tropical to temperate regions. Because bacterial wilt has decreased the sesame industry yield, we sequenced the SEPPX05 genome using PacBio and Illumina HiSeq 2500 systems and revealed that R. solanacearum strain SEPPX05 carries a bipartite genome consisting of a 3,930,849 bp chromosome and a 2,066,085 bp megaplasmid with 66.84% G+C content that harbors 5,427 coding sequences. Based on the whole genome, phylogenetic analysis showed that strain SEPPX05 is grouped with two phylotype I strains (EP1 and GMI1000). Pan-genomic analysis shows that R. solanacearum is a complex species with high biological diversity and was able to colonize various environments during evolution. Despite deletions, insertions, and inversions, most genes of strain SEPPX05 have relatively high levels of synteny compared with strain GMI1000. We identified 104 genes involved in virulence-related factors in the SEPPX05 genome and eight absent genes encoding T3Es of GMI1000. Comparing SEPPX05 with other species, we found highly conserved secretion systems central to modulating interactions of host bacteria. These data may provide important clues for understanding underlying pathogenic mechanisms of R. solanacearum and help in the control of sesame bacterial wilt.  相似文献   

19.
We find out the antimicrobial potential of partially purified 2,4-diacetylphloroglucinol (DAPG) against Ralstonia solanacearum and fungal plant pathogens isolated from tomato rhizobacterium Pseudomonas fluorescens VSMKU3054. The present study is mainly focused on the control of wilt disease of tomato by our isolate VSMKU3054 and DAPG. The cell free culture filtrate of P. fluorescens VSMKU3054 was significantly arrested the growth of R. solanacearum and fungal pathogens such as Rhizoctonia solani, Sclerotium rolfsii, Macrophomina phaseolina and Fusarium oxysporum compared to control. The existence of DAPG from the crude metabolites of P. fluorescens VSMKU3054 was confirmed on TLC with Rf value 0.34, which is coincide with that of authentic phloroglucinol. The partially purified DAPG exhibited much higher activity against R. solanacearum at 30 µg/ml than the fungal plant pathogens compared to control. The antimicrobial partially purified compound was identified as DAPG by UV, FT-IR and GC–MS analysis. The percentage of live cells of R. solanacearum when supplemented with DAPG at 30 µg/ml, significantly controlled the living nature of R. solanacearum up to 68% compared to tetracycline and universal control observed under high content screening analysis. The selected isolate P. fluorescens VSMKU3054 and DAPG significantly controlled wilt disease of tomato up to 59.5% and 42.12% on 3rd and 7th days compared to positive and negative control by detached leaf assay. Further, in silico analysis revealed that high interaction of DAPG encoding protease with lectin which is associated with R. solanacearum. Based on our findings, we confirmed that P. fluorescens VSMKU3054 and DAPG could be used a potential bio inoculants for the management of bacterial wilt disease of tomato.  相似文献   

20.
In vitro formation of roots is obtained directly, without intermediate growth of callus, from foliar explants of a tobacco (Nicotiana tabacum) plant cultured on Murashige and Skoog medium containing IAA. Auxin-induced root formation was accompanied by significant changes in hydroxycinnamoylputrescine levels. Increasing levels were found in leaf explants during the first 14 days in culture; this was followed by a sharp decline after 20 days. Early changes in putrescine conjugates were detected in leaf explants before the visible appearance of roots. An early and transitory accumulation of hydroxycinnamoylputrescines was observed in the roots. Free polyamines (putrescine, spermidine, and spermine) in leaf explants and roots were always at a low level and only small changes in their concentrations were observed, α-dl-difluoromethylarginine and α-dl-difluoromethylornithine, specific, irreversible inhibitors of arginine decarboxylase and ornithine decarboxylase, respectively, inhibited putrescine accumulation and root initiation and reduced the fresh and dry weights of leaf explants. These effects were reversed by free putrescine or hydroxycinnamoylputrescines. The results reported here suggest that hydroxycinnamoylputrescines are associated with root formation. The relationship among free polyamines, hydroxycinnamoylputrescines, cell division, and root formation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号