首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria combine the production of energy with an efficient chain of reduction–oxidation (redox) reactions but also with the unavoidable production of reactive oxygen species. Oxidative stress leading to mitochondrial dysfunction is a critical factor in many diseases, such as cancer and neurodegenerative and lifestyle-related diseases. Effective antioxidants thus offer great therapeutic and preventive promise. Investigating the efficacy of antioxidants, we found that a carotenoid, astaxanthin (AX), decreased physiologically occurring oxidative stress and protected cultured cells against strong oxidative stress induced with a respiratory inhibitor. Moreover, AX improved maintenance of a high mitochondrial membrane potential and stimulated respiration. Investigating how AX stimulates and interacts with mitochondria, a redox-sensitive fluorescent protein (roGFP1) was stably expressed in the cytosol and mitochondrial matrix to measure the redox state in the respective compartments. AX at nanomolar concentrations was effective in maintaining mitochondria in a reduced state. Additionally, AX improved the ability of mitochondria to remain in a reduced state under oxidative challenge. Taken together, these results suggest that AX is effective in improving mitochondrial function through retaining mitochondria in the reduced state.  相似文献   

2.
3.
4.
Ischemia-reperfusion injury (IR injury), produced by initial interruption and subsequent restoration of organ blood flow, is an important clinical dilemma accompanied by various cardiac reperfusion strategies following acute myocardial infarction (AMI). Although the restored blood flow is necessary for oxygen and nutrient supply, reperfusion often results in pathological sequelae leading to elevated ischemic damage. Among various theories postulated for IR injury including vascular leakage, oxidative stress, leukocyte entrapment, inflammation and apoptosis, mitochondrial dysfunction plays an essential role in mediating pathophysiological processes with recent evidence depicting a pivotal role for impaired mitophagy in mitochondrial injury. Given the critical role for mitophagy in mitochondrial quality control and the recent reports supporting a tie between mitophagy and IR injury, this review will revisit the contemporary understanding of mitophagy in the regulation of cardiac homeostasis and update recent progresses with regards to mitophagy and cardiac IR injury. We hope to establish a role for mitophagy as a potential therapeutic target in the management of IR injury.  相似文献   

5.
Aging is associated with progressive decline in cardiac structure and function. Accumulating evidence in model organisms and humans links cardiac aging to mitochondrial regulation, encompassing a complex interplay of mitochondrial morphology, mitochondrial ROS, mitochondrial DNA mutations, mitochondrial unfolded protein response, nicotinamide adenine dinucleotide levels and sirtuins, as well as mitophagy. This review summarizes the recent discoveries on the mitochondrial regulation of cardiac aging and the possible molecular mechanisms underlying the anti-aging effects, as well as the potential interventions that alleviate aging-related cardiac diseases and attenuate cardiac aging via the regulation of mitochondria.  相似文献   

6.
Aging and aerobic exercise are two conditions known to interfere with health and quality of life, most likely by inducing oxidative stress to the organism. We studied the effects of aging on the morphological and functional properties of skeletal, cardiac, and intestinal muscles and their corresponding oxidative status in C57BL/6 mice and investigated whether a lifelong moderate exercise program would exert a protective effect against some deleterious effects of aging. As expected, aged animals presented a significant reduction of physical performance, accompanied by a decrease of gastrocnemius cross-sectional area and cardiac hypertrophy. However, most interesting was that aging dramatically interfered with the intestinal structure, causing a significant thickening of the ileum muscular layer. Senescent intestinal myocytes displayed many mitochondria with disorganized cristae and the presence of cytosolic lamellar corpuscles. Lipid peroxidation of ileum and gastrocnemius muscle, but not of the heart, increased in aged mice, thus suggesting enhanced oxidative stress. With exception of the intestinal muscle responsiveness, animals submitted to a daily session of 60 min, 5 days/wk, at 13 up to 21 m/min of moderate running in treadmill during animal life span exhibited a reversion of all the observed aging effects on intestinal, skeletal, and heart muscles. The introduction of this lifelong exercise protocol prevented the enhancement of lipid peroxidation and sarcopenia and also preserved cellular and ultracellular structures of the ileum. This is the first time that the protective effect of a lifelong regular aerobic physical activity against the deleterious effects of aging on intestinal muscle was demonstrated.  相似文献   

7.
We investigated the effect of Wnt11 on mitochondrial membrane integrity in cardiomyocytes (CMs) and the underlying mechanism of Wnt11-mediated CM protection against hypoxic injury. A rat mesenchymal stem cell (MSC) line that overexpresses Wnt11 (MSCWnt11) and a control cell line transduced with empty vector (MSCNull) were established to determine the cardioprotective role of Wnt11 in response to hypoxia. Mitochondrial membrane integrity in MSCWnt11 cells was assessed using fluorescence assays. The role of paracrine signaling mediated by vascular endothelial growth factor (VEGF), basic fibroblast growth factor (b-FGF), and insulin-like growth factor 1 (IGF-1) in protecting CMs against hypoxia were investigated using cocultures of primary CMs from neonatal rats with conditioned medium (CdM) from MSCWnt11. MSCWnt11 cells exposed to hypoxia reduced lactate dehydrogenase release from CMs and increased CM survival under hypoxia. In addition, CMs cocultured with CdM that were exposed to hypoxia showed reduced CM apoptosis and necrosis. There was significantly higher VEGF and IGF-1 release in the MSCWnt11 group compared with the MSCNull group, and the addition of anti-VEGF and anti-IGF-1 antibodies inhibited secretion. Moreover, mitochondrial membrane integrity was maintained in the MSCWnt11 cell line. In conclusion, overexpression of Wnt11 in MSCs promotes IGF-1 and VEGF release, thereby protecting CMs against hypoxia.  相似文献   

8.
9.
We found that overexpression of tail interacting protein of 47 kDa (TIP47), but not its truncated form (t-TIP47) protected NIH3T3 cells from hydrogen-peroxide-induced cell death, prevented the hydrogen-peroxide-induced mitochondrial depolarization determined by 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-benzimidazolylcarbocyanine iodide (JC1), while suppression of TIP47 in HeLa cells facilitated oxidative-stress-induced cell death. TIP47 was located to the cytoplasm of untreated cells, but some was associated to mitochondria in oxidative stress. Recombinant TIP47, but not t-TIP47 increased the mitochondrial membrane potential (Δψ), and partially prevented Ca2+ induced depolarization. It is assumed that TIP47 can bind to mitochondria in oxidative stress, and inhibit mitochondria mediated cell death by protecting mitochondrial membrane integrity.  相似文献   

10.
Tamoxifen is the most commonly used antiestrogen for the treatment of breast cancer. Several clinical trials demonstrate that tamoxifen reduces the risk of heart disease and osteoporosis. However, the mechanism by which tamoxifen causes cardioprotection is unclear. Because increased levels of tumor necrosis factor alpha (TNFalpha) in tissue and/or plasma have been observed in virtually all forms of cardiac injury, we investigated whether tamoxifen prevents cardiac injury in a murine model of acute TNFalpha challenge. Five- to six-week-old female mice were injected (ip) with tamoxifen at 0.25 mg/kg daily for 3 or 7 days before receiving an injection of TNFalpha. Ultrastructural examination of cardiac tissues revealed remarkable protection against TNFalpha-induced mitochondrial damage in tamoxifen pretreated mice. Tamoxifen treatment significantly improved the mitochondrial respiratory function and enhanced superoxide-scavenging activity of mitochondria. These findings reveal a novel mitochondria-mediated mechanism by which tamoxifen exerts its cardiac protection effect against acute TNFalpha-induced heart injury.  相似文献   

11.
In a search for plant products against cancer, the protective effect of two plant products, ursolic acid isolated from Ocimum sanctum and oleanolic acid from Eugenia jumbolana against free radical induced damage was studied. Three different standard systems viz., ascorbic acid, carbon tetrachloride, ADP/Iron were used to induce lipid peroxidation in isolated rat liver microsomes in vitro. Both oleanolic acid and ursolic acid offered remarkable protection of 90% and 60% respectively. Both the compounds did not induce lipid peroxidation by themselves that improved the therapeutic application.  相似文献   

12.
According to the free radical theory of aging, oxygen-derived free radicals causes the age-associated impairment at the cellular and tissue levels. The mitochondrial theory of aging points to mitochondria, and specially mitochondrial DNA, as the major targets of free radical attack upon aging. Thus, oxidative damage to mtDNA accumulate with age in human and rodent tissues and also is inversely related to maximum life span of mammals. Mitochondrial deficits, such as a decrease in mitochondrial membrane potential, occur upon aging due to oxidative damage. The age-related mitochondrial oxidative stress may be prevented by late onset administration of certain antioxidants, such as Ginkgo biloba extract EGb 761. These antioxidants may also delay the physiological impairment associated with aging.  相似文献   

13.
Cisplatin is an effective antineoplastic drug that is widely used to treat various cancers; however, it causes side effects such as ototoxicity via the induction of apoptosis of hair cells in the cochlea. Alpha-lipoic acid (ALA) has been reported to exert a protective effect against both antibiotic-induced and cisplatin-induced hearing loss. Therefore, this study was conducted to (1) elucidate the mechanism of the protective effects of ALA against cisplatin-induced ototoxicity using in vitro and ex vivo culture systems of HEI-OC1 auditory cells and rat cochlear explants and (2) to gain additional insight into the apoptotic mechanism of cisplatin-induced ototoxicity. ALA pretreatment significantly reduced apoptotic cell death of the inner and outer hair cells in cisplatin-treated organ of Corti explants and attenuated ototoxicity via marked inhibition of the increase in the expression of IL-1β and IL-6, the phosphorylation of ERK and p38, the degradation of IκBα, the increase in intracellular levels of ROS, and the activation of caspase-3 in cisplatin-treated HEI-OC1 cells. This study represents the first histological evaluation of the organ of Corti following treatment with ALA, and these results indicate that the protective effects of ALA against cisplatin-induced ototoxicity are mediated via the regulation of MAPKs and proinflammatory cytokines.  相似文献   

14.
Apoptosis repressor with a CARD domain (ARC) has been demonstrated to protect heart cells against ischemia/reperfusion (I/R) injury. In this study, we investigated the mechanism by which ARC protects heart cells against oxidative stress. We monitored the extent of apoptosis and activity of multiple components of the intrinsic apoptotic pathway in rat cardiac myoblast cell line H9c2 with either reduced or increased expression of ARC during oxidative stress. Overexpression of ARC-inhibited oxidative stress-induced caspase-2/3 activation, cytochrome c release, and translocation of Bax to mitochondria. Furthermore, phosphorylation of ARC at threonine 149 was found to be critical to its function. ARC containing a T149A mutation failed to translocate to mitochondria, did not inhibit caspase-2 activation, and had a dominant negative effect against the protective effect of endogenous ARC during oxidative stress. In addition, wild-type ARC but not the T149A mutant inhibited cell death induced by overexpression of caspase-2. Using a yeast two-hybrid (YTH) screening approach and co-immunoprecipitation (Co-IP), we found that protein phosphatase 2C (PP2C) interacted with ARC and that PP2C mediated-dephosphorylation of ARC inhibited its anti-apoptotic activity. Eliminating either the N-terminal CARD domain or the C-terminal P/E domain also abolished the anti-apoptotic function of ARC, suggesting that full-length ARC is required for its apoptotic inhibition. These results indicate that ARC plays an important role in protection of H9c2 cells against oxidative stress-induced apoptosis by phosphorylation-dependent suppression of the mitochondria-mediated intrinsic pathway, partially initiated through the activation of caspase-2.  相似文献   

15.
Che  Yan  Wang  Zhaopeng  Yuan  Yuan  Zhou  Heng  Wu  Haiming  Wang  Shasha  Tang  Qizhu 《Cell biology and toxicology》2022,38(3):451-467
Cell Biology and Toxicology - Despite effective anticancer effects, the use of doxorubicin (Dox) is limited due to its side effects as cardiotoxicity. Corosolic acid (CRA) is a pentacyclic...  相似文献   

16.
Cardiac hypertrophy, a major determinant of heart failure, is associated with heat shock proteins (HSPs). HSP75 has been reported to protect against environmental stresses; however, its roles in cardiac hypertrophy remain unclear. Here, we generated cardiac-specific inducible HSP75 transgenic mice (TG) and cardiac hypertrophy was developed at 4 weeks after aortic banding in TG mice and wild-type littermates. The results revealed that overexpression of HSP75 prevented cardiac hypertrophy and fibrosis as assessed by heart weight/body weight ratio, heart weight/tibia length ratio, echocardiographic and hemodynamic parameters, cardiomyocyte width, left ventricular collagen volume, and gene expression of hypertrophic markers. Further studies showed that overexpression of HSP75 inhibited the activation of TAK/P38, JNK, and AKT signaling pathways. Thus, HSP75 likely reduces the hypertrophy and fibrosis induced by pressure overload through blocking TAK/P38, JNK, and AKT signaling pathways.  相似文献   

17.
Excess high-fat diet (HFD) intake predisposes the occurrence of obesity-associated heart injury, but the mechanism is elusive. Fisetin (FIS), as a natural flavonoid, has potential activities to alleviate obesity-induced metabolic syndrome. However, the underlying molecular mechanisms of FIS against HFD-induced cardiac injury remain unclear. The present study was to explore the protective effects of FIS on cardiac dysfunction in HFD-fed mice. We found that FIS alleviated HFD-triggered metabolic disorder by reducing body weight, fasting blood glucose and insulin levels, and insulin resistance. Moreover, FIS supplements significantly alleviated dyslipidemia in both mouse hearts and cardiomyocytes stimulated by metabolic stress. FIS treatment abolished HFD-induced inflammatory response in heart tissues through suppressing TNF receptor-1/TNF receptor-associated factor-2 (Tnfr-1/Traf-2) signaling. Furthermore, FIS induced a strong reduction in the expression of fibrosis-related genes, contributing to the inhibition of fibrosis by inactivating transforming growth factor (Tgf)-β1/Smads/Erk1/2 signaling. Collectively, these results demonstrated that FIS could be a promising therapeutic strategy for the treatment of obesity-associated cardiac injury.  相似文献   

18.
19.
Oleanolic acid and its synthetic derivatives have been identified as novel inhibitors of glycogen phosphorylase. Within this series of compounds, 4 (IC50 = 3.3 microM) is the most potent GPa inhibitor. Preliminary structure-activity relationships of the oleanolic acid derivatives are discussed.  相似文献   

20.
Acute lung injury (ALI) and its severe form acute respiratory distress syndrome (ARDS) remain a major cause of morbidity and mortality in critically ill patients, and no specific therapies are still available to control the mortality rate. Thus, we explored the preventive and therapeutic effects of tannic acid (TA), a natural polyphenol in the context of ALI. We used in vivo and in vitro models, respectively, using lipopolysaccharide (LPS) to induce ALI in mice and exposing J774 and BEAS-2B cells to LPS. In both preventive and therapeutic approaches, TA attenuated LPS-induced histopathological alterations, lipid peroxidation, lung permeability, infiltration of inflammatory cells, and the expression of proinflammatory mediators. In addition, in-vitro study showed that TA treatment could reduce the expression of proinflammatory mediators. Further studies revealed that TA-dampened inflammatory responses by downregulating the LPS-induced toll-like receptor 4 (TLR4) expression and inhibiting extracellular-signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) activation. Furthermore, cells treated with the inhibitors of ERK1/2 (PD98059) and p38 (SB203580) mitigated the expression of cytokines induced by LPS, thus suggesting that ERK1/2 and p38 activity are required for the inflammatory response. In conclusion, TA could attenuate LPS-induced inflammation and may be a potential therapeutic agent for ALI-associated inflammation in clinical settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号