首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Tetrahydrobiopterin (BH4) is important for normal brain development as congenital BH4 deficiencies manifest movement disorders at various childhood ages. BH4 transitions from very low levels in fetal brains to higher “adult” levels postnatally, with the highest levels in the thalamus. Maternal supplementation with the BH4 precursor sepiapterin reduces postnatal motor deficits and perinatal deaths after 40-min fetal hypoxia–ischemia (HI) at 70% gestation, suggesting that brain BH4 is important in improving function after HI. We tested the hypothesis that the intrinsically low concentrations of BH4 made fetal neurons vulnerable to added insults. Brains were obtained from naïve fetal rabbits or after 40-min HI, at 70% (E22) and 92% gestation (E29). Neuronal cultures were prepared from basal ganglia, cortex, and thalamus, regions with different intrinsic levels of BH4. Cultures were grown with or without added BH4 for 48 h. Cell survival and mitochondrial function were determined by flow cytometry. At E22, thalamic cells had the lowest survival rate in a BH4-free milieu, in both control and HI groups, whereas BH4 supplementation ex vivo increased neuronal survival only in HI cells. Neuronal survival was similar in all regions without BH4 at E29. BH4 supplementation increased cell survival and cells with intact mitochondrial membrane potential, from basal ganglia and cortex, but not thalamus. After E29 HI, however, the benefit of BH4 was limited to cortical neurons. We conclude that BH4 is important for fetal neuronal survival after HI especially in the premature thalamus. Supplementation of BH4 has a greater benefit at an earlier gestational age.  相似文献   

2.
A method to identify β-sheets in globular proteins from extended strands, using only α-carbon positions, has been developed. The strands that form β-sheets are picked up by means of simple distance criteria. The method has been tested by applying it to three proteins with accurately known secondary structures. It has also been applied to ten other proteins wherein only α-carbon coordinates are available, and the list of β-sheets obtained. The following points are worth noting: (i) The sheets identified by the algorithm are found to agree satisfactorily with the reported ones based on backbone hydrogen bonding, wherever this information is available. (ii) β-Strands that do not form parts of any sheet are a common feature of protein structures. (iii) Such isolated β-strands tend to be short. (iv) The conformation corresponding to the preferred right-handed twist of the sheet is overwhelmingly observed in both the sheet-forming and isolated β-strands.  相似文献   

3.
Fatty and fibrous connective tissue formation is a hallmark of diseased skeletal muscle and deteriorates muscle function. We previously identified non-myogenic mesenchymal progenitors that contribute to adipogenesis and fibrogenesis in mouse skeletal muscle. In this study, we report the identification and characterization of a human counterpart to these progenitors. By using PDGFRα as a specific marker, mesenchymal progenitors can be identified in the interstitium and isolated from human skeletal muscle. PDGFRα+ cells represent a cell population distinct from CD56+ myogenic cells, and adipogenic and fibrogenic potentials were highly enriched in the PDGFRα+ population. Activation of PDGFRα stimulates proliferation of PDGFRα+ cells through PI3K-Akt and MEK2-MAPK signaling pathways, and aberrant accumulation of PDGFRα+ cells was conspicuous in muscles of patients with both genetic and non-genetic muscle diseases. Our results revealed the pathological relevance of PDGFRα+ mesenchymal progenitors to human muscle diseases and provide a basis for developing therapeutic strategy to treat muscle diseases.  相似文献   

4.
5.
Reactive oxygen species (ROS) are known to participate in neurodegeneration after ischemia–reperfusion. With the aid of ROS, the calpain-induced lysosomal rupture provokes ischemic neuronal death in the cornu Ammonis (CA) 1 of the hippocampus; however, the target proteins of ROS still remain unknown. Here a proteomic analysis was done to identify and characterize ROS-induced carbonyl modification of proteins in the CA1 of the macaque monkey after transient whole-brain ischemia followed by reperfusion. We found that carbonyl modification of heat shock 70-kDa protein 1 (Hsp70-1), a major stress-inducible member of the Hsp70 family, was extensively increased before the neuronal death in the CA1 sector, and the carbonylation site was identified to be Arg469 of Hsp70-1. The CA1 neuronal death conceivably occurs by calpain-mediated cleavage of carbonylated Hsp70 that becomes prone to proteolysis with the resultant lysosomal rupture. In addition, the carbonyl levels of dihydropyrimidinase-like 2 isoform 2, glial fibrillary acidic protein, and β-actin were remarkably increased in the postischemic CA1. Therefore, ischemia–reperfusion-induced oxidative damage to these proteins in the CA1 may lead to loss of the neuroprotective function, which contributes to neuronal death.  相似文献   

6.
We analyzed the urine proteome in 14 healthy volunteers who were subjected to 5-day dry immersion using proteomic analysis methods and bioinformatics approach. We identified nine proteins related to the cardiovascular system. It was shown that 5-day dry immersion modifies the urine proteomic profile, indicating renal, endocrine, circulatory, and metabolic changes. Most of these changes are characterized by both a very rapid development and very rapid restoration within return to normal conditions.  相似文献   

7.
8.
《Cellular signalling》2014,26(4):697-704
Na+/H+ exchanger-1 (NHE-1) activity is known to play a critical role in the neuronal injury caused by glutamate. However, the underlying mechanism is not clear. This study shows that NHE-1 activation and its phosphorylation during glutamate exposure were attenuated by the inhibition of protein kinase C (PKC)-βI and -βII, leading to reduced neuronal death. In addition, activations of PKC-βI and -βII by PKC-βI and -βII CAT plasmid or by PMA, PKC-β pharmacological activator have stimulated the activity and phosphorylation of NHE-1, which were abolished by inhibition of PKC-β in neuronal cells. Furthermore, the inhibition of PKC-β has mediated neuroprotective effect on glutamate-induced cells, which is similar to neuroprotective efficacy of siRNA NHE-1 transfection. Taken together, these results suggest that activation of the PKC-βI and -βII pathway by glutamate increases the activity and phosphorylation of NHE-1, and that these increases contribute to neuronal cell death. In this study, we demonstrate that PKC-βI and -βII are involved in the regulation of NHE-1 activation following glutamate exposure in neuron.  相似文献   

9.
10.
11.
12.
The present study aimed to investigate whether hyperbaric oxygen preconditioning (HBO-PC) could ameliorate hypoxia–ischemia brain damage (HIBD) by an increase of Nrf2 expression. P7 Sprague-Dawley rats (aged 7 d, n?=?195) were used in two in vivo experiments, including BO-PC exposure experiments in non-HIBD models and treatment experiments in HIBD models. 2,3,5-triphenyltetrazolium chloride (TTC) staining, Nissl Staining, and TUNEL staining were performed. And expressions of Nrf2, HO-1, and GSTs were measured. For in vitro studies, oxygen–glucose deprivation cells were established. Morphological and apoptotic staining and gene silencing of Nrf2 by siRNA transfection were investigated. For exposure experiments, HBO-PC for longer time increased the expression of Nrf2 significantly. And for treatment experiments, HBO-PC treatment significantly decreased infarction area, lessened neuronal injury, reduced apoptosis, and increased both the expression of Nrf2 and activities of its downstream proteins. Cytology tests confirmed effects of HBO-PC treatments. Besides, Nrf2 siRNA significantly reduced protective effects of HBO-PC. These observations demonstrated that an up-regulation of Nrf2 by HBO-PC might play an important role in the generation of tolerance against HIBD.  相似文献   

13.
The mammalian steroid hormone progesterone actuates a signalling pathway in the zygomycete Rhizopus nigricans which includes heterotrimeric G proteins. To investigate the possibility that the Gβ subunit of these proteins is involved in the signalling, a cDNA library from R. nigricans exposed to progesterone was prepared and a sequence coding for a Gβ subunit was searched for. Using degenerate primers, two sequences, RnGPB1 and RnGPB2, were identified that exhibited a high degree of identity with those for Gβ from other filamentous fungi, but not from yeast. The presence of more than one Gβ subunit is very rare among the fungi, and it has been to date reported only for Rhizopus oryzae. We have shown that progesterone increases the expression of RnGPB1, but has no influence on the expression of RnGPB2. Therefore, our studies imply the involvement of Gβ subunit 1 in the response of R. nigricans to progesterone. Moreover, the Gβ subunit is subjected to endogenous ADP-ribosylation in the presence of NAD, which could be important in some, as yet unknown, cell process. Article from a special issue on steroids and microorganisms.  相似文献   

14.
Neonatal hypoxia–ischemia (HI) produces neurodegeneration and brain injury, and leads to behavioral and cognitive dysfunction. Hyperbaric oxygen (HBO) treatment may potentially be neuroprotective in HI injury. The aim of this study was to examine any neuroprotection by HBO treatment on long-term neurological function in the rat model of neontatal HI. Seven-day-old rats were subjected to HI or sham surgery. HBO treatment was administered (2.5 ATA for 90 min) 1 h after hypoxia exposure. Sensorimotor (grip test and rota-rod) and cognitive tests (inhibitory avoidance and Morris water maze) were performed at postnatal day 28 to day 60. The extent of brain damage was determined by histological evaluation. Apoptosis, caspase-3 and apoptosis inducing factor (AIF) expression were assessed by immunohistochemistry 12, 24, and 48 h after HI. HI-treated animals had significantly worse sensorimotor and cognitive performances than those in the Sham group. HBO treatment led to significant improvements in neurobehavioral functions compared to the HI group, especially for cognitive performances. Morphological evaluation revealed a remarkable recovery of brain injury in the HBO group. Furthermore, the improvements in neurobehavioral impairments were correlated with the reduction in lesion size of the hippocampus and cerebral cortex. The proportion of apoptotic cells significantly increased with time after HI, and HBO significantly inhibited apoptotic cell death. The proportion of caspase-3 positive cells and nuclear AIF translocation increased and peaked at 24 h after HI injury. HBO-treated rats showed decreased expression of these proteins compared to HI-treated animals. In conclusion, our results suggested that HBO treatment was effective in promoting long-term functional and histological recovery against neonatal HI brain injury. HBO-induced neuroprotection was associated with suppression of apoptosis by inhibiting caspase-3 and AIF-mediated pathways. Further studies evaluating its associated molecular and cellular mechanism are needed.  相似文献   

15.
To elucidate the involvement of monoamine oxidase (MAO) in hydroxyl radical production and cardiomyocyte injury during ischemia as well as after reperfusion, we applied microdialysis technique to the heart of anesthetized rats. Dialysate samples were collected during 30?min of induced ischemia followed by 60?min of reperfusion. We monitored dialysate 3,4-dihydrobenzoic acid (3,4-DHBA) concentration as an index of hydroxyl radical production using a trapping agent (4-hydroxybenzoic acid), and dialysate myoglobin concentration as an index of cardiomyocyte injury in the ischemic region. The effect of local administration of a MAO inhibitor, pargyline, was investigated. Dialysate 3,4-DHBA concentration increased from 1.9?±?0.5?nM at baseline to 3.5?±?0.7?nM at 20–30?min of occlusion. After reperfusion, dialysate 3,4-DHBA concentration further increased reaching a maximum (4.5?±?0.3?nM) at 20–30?min after reperfusion, and stabilized thereafter. Pargyline suppressed the averaged increase in dialysate 3,4-DHBA concentration by ~72% during occlusion and by ~67% during reperfusion. Dialysate myoglobin concentration increased from 235?±?60?ng/ml at baseline to 1309?±?298?ng/ml at 20–30?min after occlusion. After reperfusion, dialysate myoglobin concentration further increased reaching a peak (5833?±?1017?ng/ml) at 10–20?min after reperfusion, and then declined. Pargyline reduced the averaged dialysate myoglobin concentration by ~56% during occlusion and by ~41% during reperfusion. MAO plays a significant role in hydroxyl radical production and cardiomyocyte injury during ischemia as well as after reperfusion.  相似文献   

16.
In pancreatic β-cells, glutamate dehydrogenase (GDH) modulates insulin secretion, although its function regarding specific secretagogues is unclear. This study investigated the role of GDH using a β-cell–specific GDH knockout mouse model, called βGlud1−/−. The absence of GDH in islets isolated from βGlud1–/– mice resulted in abrogation of insulin release evoked by glutamine combined with 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid or l-leucine. Reintroduction of GDH in βGlud1–/– islets fully restored the secretory response. Regarding glucose stimulation, insulin secretion in islets isolated from βGlud1–/– mice exhibited half of the response measured in control islets. The amplifying pathway, tested at stimulatory glucose concentrations in the presence of KCl and diazoxide, was markedly inhibited in βGlud1–/– islets. On glucose stimulation, net synthesis of glutamate from α-ketoglutarate was impaired in GDH-deficient islets. Accordingly, glucose-induced elevation of glutamate levels observed in control islets was absent in βGlud1–/– islets. Parallel biochemical pathways, namely alanine and aspartate aminotransferases, could not compensate for the lack of GDH. However, the secretory response to glucose was fully restored by the provision of cellular glutamate when βGlud1–/– islets were exposed to dimethyl glutamate. This shows that permissive levels of glutamate are required for the full development of glucose-stimulated insulin secretion and that GDH plays an indispensable role in this process.  相似文献   

17.
In Alzheimer disease, oligomeric amyloid β-peptide (Aβ) species lead to synapse loss and neuronal death. γ-Secretase, the transmembrane protease complex that mediates the final catalytic step that liberates Aβ from its precursor protein (APP), has a multitude of substrates, and therapeutics aimed at reducing Aβ production should ideally be specific for APP cleavage. It has been shown that APP can be processed in lipid rafts, and γ-secretase-associated proteins can affect Aβ production. Here, we use a biotinylated inhibitor for affinity purification of γ-secretase and associated proteins and mass spectrometry for identification of the purified proteins, and we identify novel γ-secretase-associated proteins in detergent-resistant membranes from brain. Furthermore, we show by small interfering RNA-mediated knockdown of gene expression that a subset of the γ-secretase-associated proteins, in particular voltage-dependent anion channel 1 (VDAC1) and contactin-associated protein 1 (CNTNAP1), reduced Aβ production (Aβ40 and Aβ42) by around 70%, whereas knockdown of presenilin 1, one of the essential γ-secretase complex components, reduced Aβ production by 50%. Importantly, these proteins had a less pronounced effect on Notch processing. We conclude that VDAC1 and CNTNAP1 associate with γ-secretase in detergent-resistant membranes and affect APP processing and suggest that molecules that interfere with this interaction could be of therapeutic use for Alzheimer disease.  相似文献   

18.
Fucoxanthin–chlorophyll proteins (FCP) are the major light-harvesting proteins of diatom algae, a major contributor to marine carbon fixation. FCP complexes from representatives of centric (Cyclotella meneghiniana) and pennate (Phaeodactylum tricornutum) diatoms were prepared by sucrose gradient centrifugation and studied by means of electron microscopy followed by single particle analysis. The oligomeric FCP from a centric diatom were observed to take the form of unusual chain-like or circular shapes, a very unique supramolecular assembly for such antennas. The existence of the often disputed oligomeric form of FCP in pennate diatoms has been confirmed. Contrary to the centric diatom FCP, pennate diatom FCP oligomers are very similar to oligomeric antennas from related heterokont (Stramenopila) algae. Evolutionary aspects of the presence of novel light-harvesting protein arrangement in centric diatoms are discussed.  相似文献   

19.
Molecular Biology Reports - Renal ischemia–reperfusion injury (IRI) is one of the major causes of acute kidney injury (AKI). Although Akt is involved in renal IRI, it is unclear as to which...  相似文献   

20.
Dihydrotestosterone (DHT) attenuates cytokine-induced cyclooxygenase-2 (COX-2) in coronary vascular smooth muscle. Since hypoxia inducible factor-1α (HIF-1α) activation can lead to COX-2 production, this study determined the influence of DHT on HIF-1α and COX-2 following hypoxia or hypoxia with glucose deprivation (HGD) in the cerebral vasculature. COX-2 and HIF-1α levels were assessed via Western blot, and HIF-1α activation was indirectly measured via a DNA binding assay. Experiments were performed using cerebral arteries isolated from castrated male rats treated in vivo with placebo or DHT (18 days) followed by hypoxic exposure ex vivo (1% O(2)), cerebral arteries isolated from castrated male rats treated ex vivo with vehicle or DHT (10 or 100 nM; 18 h) and then exposed to hypoxia ex vivo (1% O(2)), or primary human brain vascular smooth muscle cells treated with DHT (10 nM; 6 h) or vehicle then exposed to hypoxia or HGD. Under normoxic conditions, DHT increased COX-2 (cells 51%; arteries ex vivo 31%; arteries in vivo 161%) but had no effect on HIF-1α. Following hypoxia or HGD, HIF-1α and COX-2 levels were increased; this response was blunted by DHT (cells HGD: -47% COX-2, -34% HIF-1α; cells hypoxia: -29% COX-2, -54% HIF-1α; arteries ex vivo: -37% COX-2; arteries in vivo: -35% COX-2) and not reversed by androgen receptor blockade. Hypoxia-induced HIF-1α DNA-binding was also attenuated by DHT (arteries ex vivo and in vivo: -55%). These results demonstrate that upregulation of COX-2 and HIF-1α in response to hypoxia is suppressed by DHT via an androgen receptor-independent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号