首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional traits define species by their ecological role in the ecosystem. Animals themselves are host–microbe ecosystems (holobionts), and the application of ecophysiological approaches can help to understand their functioning. In hard coral holobionts, communities of dinitrogen (N2)-fixing prokaryotes (diazotrophs) may contribute a functional trait by providing bioavailable nitrogen (N) that could sustain coral productivity under oligotrophic conditions. This study quantified N2 fixation by diazotrophs associated with four genera of hermatypic corals on a northern Red Sea fringing reef exposed to high seasonality. We found N2 fixation activity to be 5- to 10-fold higher in summer, when inorganic nutrient concentrations were lowest and water temperature and light availability highest. Concurrently, coral gross primary productivity remained stable despite lower Symbiodinium densities and tissue chlorophyll a contents. In contrast, chlorophyll a content per Symbiodinium cell increased from spring to summer, suggesting that algal cells overcame limitation of N, an essential element for chlorophyll synthesis. In fact, N2 fixation was positively correlated with coral productivity in summer, when its contribution was estimated to meet 11% of the Symbiodinium N requirements. These results provide evidence of an important functional role of diazotrophs in sustaining coral productivity when alternative external N sources are scarce.  相似文献   

2.
Enhancing the resilience of corals to rising temperatures is now a matter of urgency, leading to growing efforts to explore the use of heat tolerant symbiont species to improve their thermal resilience. The notion that adaptive traits can be retained by transferring the symbionts alone, however, challenges the holobiont concept, a fundamental paradigm in coral research. Holobiont traits are products of a specific community (holobiont) and all its co‐evolutionary and local adaptations, which might limit the retention or transference of holobiont traits by exchanging only one partner. Here we evaluate how interchanging partners affect the short‐ and long‐term performance of holobionts under heat stress using clonal lineages of the cnidarian model system Aiptasia (host and Symbiodiniaceae strains) originating from distinct thermal environments. Our results show that holobionts from more thermally variable environments have higher plasticity to heat stress, but this resilience could not be transferred to other host genotypes through the exchange of symbionts. Importantly, our findings highlight the role of the host in determining holobiont productivity in response to thermal stress and indicate that local adaptations of holobionts will likely limit the efficacy of interchanging unfamiliar compartments to enhance thermal tolerance.  相似文献   

3.
Holobionts are assemblages of microbial symbionts and their macrobial host. As extant representatives of some of the oldest macro-organisms, corals and algae are important for understanding how holobionts develop and interact with one another. Using untargeted metabolomics, we show that non-self interactions altered the coral metabolome more than self-interactions (i.e. different or same genus, respectively). Platelet activating factor (PAF) and Lyso-PAF, central inflammatory modulators in mammals, were major lipid components of the coral holobionts. When corals were damaged during competitive interactions with algae, PAF increased along with expression of the gene encoding Lyso-PAF acetyltransferase; the protein responsible for converting Lyso-PAF to PAF. This shows that self and non-self recognition among some of the oldest extant holobionts involve bioactive lipids identical to those in highly derived taxa like humans. This further strengthens the hypothesis that major players of the immune response evolved during the pre-Cambrian.  相似文献   

4.
Many reef-building corals form symbioses with dinoflagellates from the diverse genus Symbiodinium. There is increasing evidence of functional significance to Symbiodinium diversity, which affects the coral holobiont''s response to changing environmental conditions. For example, corals hosting Symbiodinium from the clade D taxon exhibit greater resistance to heat-induced coral bleaching than conspecifics hosting the more common clade C. Yet, the relatively low prevalence of clade D suggests that this trait is not advantageous in non-stressful environments. Thus, clade D may only be able to out-compete other Symbiodinium types within the host habitat when conditions are chronically stressful. Previous studies have observed enhanced photosynthesis and fitness by clade C holobionts at non-stressful temperatures, relative to clade D. Yet, carbon-centered metrics cannot account for enhanced growth rates and patterns of symbiont succession to other genetic types when nitrogen often limits reef productivity. To investigate the metabolic costs of hosting thermally tolerant symbionts, we examined the assimilation and translocation of inorganic 15N and 13C in the coral Acropora tenuis experimentally infected with either clade C (sub-type C1) or D Symbiodinium at 28 and 30 °C. We show that at 28 °C, C1 holobionts acquired 22% more 15N than clade D. However, at 30 °C, C1 symbionts acquired equivalent nitrogen and 16% less carbon than D. We hypothesize that C1 competitively excludes clade D in hospite via enhanced nitrogen acquisition and thus dominates coral populations despite warming oceans.  相似文献   

5.
Coral holobionts are densely populated with microorganisms that are essential for their well-being. Here we compared the diversity of the archaeal ammonia monooxygenase alpha subunit (amoA) gene from three coral genera, Acanthastrea sp., Favia sp., and Fungia granulosa, from the Gulf of Eilat, Red Sea. At 99% similarity, archaeal amoA from the three coral genera shared 71% of their cloned sequences, while the Favia and Acanthastrea presented a few genus-specific clones. In addition, the sequences retrieved in our samples displayed lower similarity to amoA sequences previously found in association with other coral species from different geographic regions. This finding suggests that the populations of ammonia-oxidizing archaea are less host-specific and more geographically dependent.  相似文献   

6.
7.
Coral diseases are characterized by microbial community shifts in coral mucus and tissue, but causes and consequences of these changes are vaguely understood due to the complexity and dynamics of coral‐associated bacteria. We used 16S rRNA gene microarrays to assay differences in bacterial assemblages of healthy and diseased colonies displaying White Plague Disease (WPD) signs from two closely related Caribbean coral species, Orbicella faveolata and Orbicella franksi. Analysis of differentially abundant operational taxonomic units (OTUs) revealed strong differences between healthy and diseased specimens, but not between coral species. A subsequent comparison to data from two Indo‐Pacific coral species (Pavona duerdeni and Porites lutea) revealed distinct microbial community patterns associated with ocean basin, coral species and health state. Coral species were clearly separated by site, but also, the relatedness of the underlying bacterial community structures resembled the phylogenetic relationship of the coral hosts. In diseased samples, bacterial richness increased and putatively opportunistic bacteria were consistently more abundant highlighting the role of opportunistic conditions in structuring microbial community patterns during disease. Our comparative analysis shows that it is possible to derive conserved bacterial footprints of diseased coral holobionts that might help in identifying key bacterial species related to the underlying etiopathology. Furthermore, our data demonstrate that similar‐appearing disease phenotypes produce microbial community patterns that are consistent over coral species and oceans, irrespective of the putative underlying pathogen. Consequently, profiling coral diseases by microbial community structure over multiple coral species might allow the development of a comparative disease framework that can inform on cause and relatedness of coral diseases.  相似文献   

8.
Temperature influences the ecology and evolution of insects and their symbionts by impacting each partner independently and their interactions, considering the holobiont as a primary unit of selection. There are sound data about the responses of these partnerships to constant temperatures and sporadic thermal stress (mostly heat shock). However, the current understanding of the thermal ecology of insect–microbe holobionts remains patchy because the complex thermal fluctuations (at different spatial and temporal scales) experienced by these organisms in nature have often been overlooked experimentally. This may drastically constrain our ability to predict the fate of mutualistic interactions under climate change, which will alter both mean temperatures and thermal variability. Here, we tackle down these issues by focusing on the effects of temperature fluctuations on the evolutionary ecology of insect–microbe holobionts. We propose potentially worth-investigating research avenues to (i) evaluate the relevance of theoretical concepts used to predict the biological impacts of temperature fluctuations when applied to holobionts; (ii) acknowledge the plastic (behavioural thermoregulation, physiological acclimation) and genetic responses (evolution) expressed by holobionts in fluctuating thermal environments; and (iii) explore the potential impacts of previously unconsidered patterns of temperature fluctuations on the outcomes and the dynamic of these insect–microbe associations.  相似文献   

9.
The juxtaposition of highly productive coral reef ecosystems in oligotrophic waters has spurred substantial interest and progress in our understanding of macronutrient uptake, exchange, and recycling among coral holobiont partners (host coral, dinoflagellate endosymbiont, endolithic algae, fungi, viruses, bacterial communities). By contrast, the contribution of trace metals to the physiological performance of the coral holobiont and, in turn, the functional ecology of reef-building corals remains unclear. The coral holobiont's trace metal economy is a network of supply, demand, and exchanges upheld by cross-kingdom symbiotic partnerships. Each partner has unique trace metal requirements that are central to their biochemical functions and the metabolic stability of the holobiont. Organismal homeostasis and the exchanges among partners determine the ability of the coral holobiont to adjust to fluctuating trace metal supplies in heterogeneous reef environments. This review details the requirements for trace metals in core biological processes and describes how metal exchanges among holobiont partners are key to sustaining complex nutritional symbioses in oligotrophic environments. Specifically, we discuss how trace metals contribute to partner compatibility, ability to cope with stress, and thereby to organismal fitness and distribution. Beyond holobiont trace metal cycling, we outline how the dynamic nature of the availability of environmental trace metal supplies can be influenced by a variability of abiotic factors (e.g. temperature, light, pH, etc.). Climate change will have profound consequences on the availability of trace metals and further intensify the myriad stressors that influence coral survival. Lastly, we suggest future research directions necessary for understanding the impacts of trace metals on the coral holobiont symbioses spanning subcellular to organismal levels, which will inform nutrient cycling in coral ecosystems more broadly. Collectively, this cross-scale elucidation of the role of trace metals for the coral holobiont will allow us to improve forecasts of future coral reef function.  相似文献   

10.
Continued declines in coral reef health over the past three decades have been punctuated by severe mass coral bleaching‐induced mortality events that have grown in intensity and frequency under climate change. Intensive global research efforts have therefore persistently focused on bleaching phenomena to understand where corals bleach, when and why—resulting in a large—yet still somewhat patchy—knowledge base. Particularly catastrophic bleaching‐induced coral mortality events in the past 5 years have catalyzed calls for a more diverse set of reef management tools, extending far beyond climate mitigation and reef protection, to also include more aggressive interventions. However, the effectiveness of these various tools now rests on rapidly assimilating our knowledge base of coral bleaching into more integrated frameworks. Here, we consider how the past three decades of intensive coral bleaching research has established the basis for complex biological and environmental networks, which together regulate outcomes of bleaching severity. We discuss how we now have enough scaffold for conceptual biological and environmental frameworks underpinning bleaching susceptibility, but that new tools are urgently required to translate this to an operational system informing—and testing—bleaching outcomes. Specifically, adopting network models that can fully describe and predict metabolic functioning of coral holobionts, and how this functioning is regulated by complex doses and interactions among environmental factors. Identifying knowledge gaps limiting operation of such models is the logical step to immediately guide and prioritize future experiments and observations. We are at a time‐critical point where we can implement new capacity to resolve how coral bleaching patterns emerge from complex biological–environmental networks, and so more effectively inform rapidly evolving ecological management and social adaptation frameworks aimed at securing the future of coral reefs.  相似文献   

11.

Background

Reef-building corals live in symbiosis with a diverse range of dinoflagellate algae (genus Symbiodinium) that differentially influence the fitness of the coral holobiont. The comparative role of symbiont type in holobiont fitness in relation to host genotype or the environment, however, is largely unknown. We addressed this knowledge gap by manipulating host-symbiont combinations and comparing growth, survival and thermal tolerance among the resultant holobionts in different environments.

Methodology/Principal Findings

Offspring of the coral, Acropora millepora, from two thermally contrasting locations, were experimentally infected with one of six Symbiodinium types, which spanned three phylogenetic clades (A, C and D), and then outplanted to the two parental field locations (central and southern inshore Great Barrier Reef, Australia). Growth and survival of juvenile corals were monitored for 31–35 weeks, after which their thermo-tolerance was experimentally assessed. Our results showed that: (1) Symbiodinium type was the most important predictor of holobiont fitness, as measured by growth, survival, and thermo-tolerance; (2) growth and survival, but not heat-tolerance, were also affected by local environmental conditions; and (3) host population had little to no effect on holobiont fitness. Furthermore, coral-algal associations were established with symbiont types belonging to clades A, C and D, but three out of four symbiont types belonging to clade C failed to establish a symbiosis. Associations with clade A had the lowest fitness and were unstable in the field. Lastly, Symbiodinium types C1 and D were found to be relatively thermo-tolerant, with type D conferring the highest tolerance in A. millepora.

Conclusions/Significance

These results highlight the complex interactions that occur between the coral host, the algal symbiont, and the environment to shape the fitness of the coral holobiont. An improved understanding of the factors affecting coral holobiont fitness will assist in predicting the responses of corals to global climate change.  相似文献   

12.
Live corals are the key habitat forming organisms on coral reefs, contributing to both biological and physical structure. Understanding the importance of corals for reef fishes is, however, restricted to a few key families of fishes, whereas it is likely that a vast number of fish species will be adversely affected by the loss of live corals. This study used data from published literature together with independent field based surveys to quantify the range of reef fish species that use live coral habitats. A total of 320 species from 39 families use live coral habitats, accounting for approximately 8 % of all reef fishes. Many of the fishes reported to use live corals are from the families Pomacentridae (68 spp.) and Gobiidae (44 spp.) and most (66 %) are either planktivores or omnivores. 126 species of fish associate with corals as juveniles, although many of these fishes have no apparent affiliation with coral as adults, suggesting an ontogenetic shift in coral reliance. Collectively, reef fishes have been reported to use at least 93 species of coral, mainly from the genus Acropora and Porities and associate predominantly with branching growth forms. Some fish associate with a single coral species, whilst others can be found on more than 20 different species of coral indicating there is considerable variation in habitat specialisation among coral associated fish species. The large number of fishes that rely on coral highlights that habitat degradation and coral loss will have significant consequences for biodiversity and productivity of reef fish assemblages.  相似文献   

13.
Corals are among the most active producers of dimethylsulfoniopropionate (DMSP), a key molecule in marine sulfur cycling, yet the specific physiological role of DMSP in corals remains elusive. Here, we examine the oxidative stress response of three coral species (Acropora millepora, Stylophora pistillata and Pocillopora damicornis) and explore the antioxidant role of DMSP and its breakdown products under short-term hyposalinity stress. Symbiont photosynthetic activity declined with hyposalinity exposure in all three reef-building corals. This corresponded with the upregulation of superoxide dismutase and glutathione in the animal host of all three species. For the symbiont component, there were differences in antioxidant regulation, demonstrating differential responses to oxidative stress between the Symbiodinium subclades. Of the three coral species investigated, only A. millepora provided any evidence of the role of DMSP in the oxidative stress response. Our study reveals variability in antioxidant regulation in corals and highlights the influence life-history traits, and the subcladal differences can have on coral physiology. Our data expand on the emerging understanding of the role of DMSP in coral stress regulation and emphasizes the importance of exploring both the host and symbiont responses for defining the threshold of the coral holobiont to hyposalinity stress.  相似文献   

14.
《Genomics》2019,111(4):772-785
O. basilicum is medicinally important herb having inevitable role in human health. However, the mechanism of action is largely unknown. Present study aims to understand the mechanism of regulation of key human target genes that could plausibly modulated by O. basilicum miRNAs in cross kingdom manner using computational and system biology approach. O. basilicum miRNA sequences were retrieved and their corresponding human target genes were identified using psRNA target and interaction analysis of hub nodes. Six O. basilicum derived miRNAs were found to modulate 26 human target genes which were associated `with PI3K-AKTand MAPK signaling pathways with PTPN11, EIF2S2, NOS1, IRS1 and USO1 as top 5 Hub nodes. O. basilicum miRNAs not only regulate key human target genes having a significance in various diseases but also paves the path for future studies that might explore potential of miRNA mediated cross-kingdom regulation, prevention and treatment of various human diseases including cancer.  相似文献   

15.
In the context of rising seawater temperatures associated with climate change, the issue of whether coral holobionts deal with this challenge by shuffling their associations with stress‐ and/or heat‐tolerant Symbiodinium, by generating heat‐resistant host genotypes, or both is important for coral survival. In this study, the composition of communities of the endosymbiont Symbiodinium and the population genetics of the coral host Platygyra verweyi were examined in a reef impacted by hot‐water discharged from the outlet of a nuclear power plant in operation in Kenting, Southern Taiwan since 1984. The water at this site is 2.0–3.0 °C warmer than adjacent reefs in summer, which have an average seawater temperature of 29.0 °C. The data were compared with those for the same species at other sites within 12 km of the outlet site. Platygyra verwyei was associated with one or both of Symbiodinium types C3 (heat sensitive) and D1a (heat tolerant) at all sites with the latter being the dominant at the nuclear power plant outlet. The proportion of C3 in populations increased gradually with increasing distance from the hot‐water discharge. Genetic analysis of the Platygyra verweyi host using mitochondrial and nuclear markers showed no genetic differentiation among sites. Changes in the composition of Symbiodinium types associated with P. verweyi among closely located sites in Kenting suggested that this coral might have acclimatized to the constant thermal stress by selective association with heat‐tolerant Symbiodinium types, whereas the role of the host in adaptation was inconclusive.  相似文献   

16.
The importance of Symbiodinium algal endosymbionts and a diverse suite of bacteria for coral holobiont health and functioning are widely acknowledged. Yet, we know surprisingly little about microbial community dynamics and the stability of host‐microbe associations under adverse environmental conditions. To gain insight into the stability of coral host‐microbe associations and holobiont structure, we assessed changes in the community structure of Symbiodinium and bacteria associated with the coral Pocillopora verrucosa under excess organic nutrient conditions. Pocillopora‐associated microbial communities were monitored over 14 days in two independent experiments. We assessed the effect of excess dissolved organic nitrogen (DON) and excess dissolved organic carbon (DOC). Exposure to excess nutrients rapidly affected coral health, resulting in two distinct stress phenotypes: coral bleaching under excess DOC and severe tissue sloughing (>90% tissue loss resulting in host mortality) under excess DON. These phenotypes were accompanied by structural changes in the Symbiodinium community. In contrast, the associated bacterial community remained remarkably stable and was dominated by two Endozoicomonas phylotypes, comprising on average 90% of 16S rRNA gene sequences. This dominance of Endozoicomonas even under conditions of coral bleaching and mortality suggests the bacterial community of P. verrucosa may be rather inflexible and thereby unable to respond or acclimatize to rapid changes in the environment, contrary to what was previously observed in other corals. In this light, our results suggest that coral holobionts might occupy structural landscapes ranging from a highly flexible to a rather inflexible composition with consequences for their ability to respond to environmental change.  相似文献   

17.
As coral bleaching events become more frequent and intense, our ability to predict and mitigate future events depends upon our capacity to interpret patterns within previous episodes. Responses to thermal stress vary among coral species; however the diversity of coral assemblages, environmental conditions, assessment protocols, and severity criteria applied in the global effort to document bleaching patterns creates challenges for the development of a systemic metric of taxon‐specific response. Here, we describe and validate a novel framework to standardize bleaching response records and estimate their measurement uncertainties. Taxon‐specific bleaching and mortality records (2036) of 374 coral taxa (during 1982–2006) at 316 sites were standardized to average percent tissue area affected and a taxon‐specific bleaching response index (taxon‐BRI) was calculated by averaging taxon‐specific response over all sites where a taxon was present. Differential bleaching among corals was widely variable (mean taxon‐BRI = 25.06 ± 18.44%, ±SE). Coral response may differ because holobionts are biologically different (intrinsic factors), they were exposed to different environmental conditions (extrinsic factors), or inconsistencies in reporting (measurement uncertainty). We found that both extrinsic and intrinsic factors have comparable influence within a given site and event (60% and 40% of bleaching response variance of all records explained, respectively). However, when responses of individual taxa are averaged across sites to obtain taxon‐BRI, differential response was primarily driven by intrinsic differences among taxa (65% of taxon‐BRI variance explained), not conditions across sites (6% explained), nor measurement uncertainty (29% explained). Thus, taxon‐BRI is a robust metric of intrinsic susceptibility of coral taxa. Taxon‐BRI provides a broadly applicable framework for standardization and error estimation for disparate historical records and collection of novel data, allowing for unprecedented accuracy in parameterization of mechanistic and predictive models and conservation plans.  相似文献   

18.
Yu  Xiaopeng  Yu  Kefu  Chen  Biao  Liao  Zhiheng  Liang  Jiayuan  Yao  Qiucui  Qin  Zhenjun  Wang  Hao  Yu  Jiaoyang 《Coral reefs (Online)》2021,40(6):1697-1711

Ecological surveys observe coral “winners” and “losers” in global coral bleaching events. However, the key contributors to holobiont tolerance and interactions between symbionts remain unclear. Herein, we compared bleaching and unbleaching Acropora pruinosa corals from Weizhou Island, during an extreme high-temperature event in the northern South China Sea in 2020. We found the dominant Symbiodiniaceae subclade in the bleaching and unbleaching corals to be C1; however, the density of Symbiodiniaceae in the latter was significantly higher than that in the former. Additionally, the symbiotic bacteria α diversity in the unbleaching coral was significantly higher than that in the bleaching coral, with a reorganized bacterial community structure. Core microbiome analyses revealed 55 bacterial core operational taxonomic units (OTUs), of which 10 were significantly differentially enriched between the two coral groups. The significantly enriched bacterial core OTUs in the unbleaching coral were primarily nitrogen cycling related, while those enriched in the bleaching coral were associated with antimicrobial activity. RNA-Seq analyses revealed that significantly upregulated genes in the bleaching coral were primarily associated with diseases and autophagy, while those in the unbleaching coral were associated with immune defense and maintenance of the symbiotic relationship between corals and symbionts. We propose that the differences in tolerance of A. pruinosa result from the cooperation between coral host, Symbiodiniaceae, and symbiotic bacteria. In extreme high-temperature events, unbleaching corals may maintain stable symbiotic relationships by increasing the diversity of symbiotic bacteria, regulating the structure of the symbiotic bacteria community, improving the interaction between coral host and symbiont and enhancing host immunity, thus avoiding coral bleaching. This study illuminates the relationship between the coral symbiont and tolerance differences of coral holobionts, providing new insights for further exploration into the adaptability of scleractinian corals in the context of global warming.

  相似文献   

19.
The dinoflagellate photosymbiont Symbiodinium plays a fundamental role in defining the physiological tolerances of coral holobionts, but little is known about the dynamics of these endosymbiotic populations on coral reefs. Sparse data indicate that Symbiodinium populations show limited spatial connectivity; however, no studies have investigated temporal dynamics for in hospite Symbiodinium populations following significant mortality and recruitment events in coral populations. We investigated the combined influences of spatial isolation and disturbance on the population dynamics of the generalist Symbiodinium type C2 (ITS1 rDNA) hosted by the scleractinian coral Acropora millepora in the central Great Barrier Reef. Using eight microsatellite markers, we genotyped Symbiodinium in a total of 401 coral colonies, which were sampled from seven sites across a 12‐year period including during flood plume–induced coral bleaching. Genetic differentiation of Symbiodinium was greatest within sites, explaining 70–86% of the total genetic variation. An additional 9–27% of variation was explained by significant differentiation of populations among sites separated by 0.4–13 km, which is consistent with low levels of dispersal via water movement and historical disturbance regimes. Sampling year accounted for 6–7% of total genetic variation and was related to significant coral mortality following severe bleaching in 1998 and a cyclone in 2006. Only 3% of the total genetic variation was related to coral bleaching status, reflecting generally small (8%) reductions in allelic diversity within bleached corals. This reduction probably reflected a loss of genotypes in hospite during bleaching, although no site‐wide changes in genetic diversity were observed. Combined, our results indicate the importance of disturbance regimes acting together with limited oceanographic transport to determine the genetic composition of Symbiodinium types within reefs.  相似文献   

20.
The vast majority of research into the mechanisms of camouflage has focused on forms that confound visual perception. However, many organisms primarily interact with their surroundings using chemosensory systems and may have evolved mechanisms to ‘blend in’ with chemical components of their habitat. One potential mechanism is ‘chemical crypsis'' via the sequestration of dietary elements, causing a consumer''s odour to chemically match that of its prey. Here, we test the potential for chemical crypsis in the coral-feeding filefish, Oxymonacanthus longirostris, by examining olfactory discrimination in obligate coral-dwelling crabs and a predatory cod. The crabs, which inhabit the corals consumed by O. longirostris, were used as a bioassay to determine the effect of coral diet on fish odour. Crabs preferred the odour of filefish fed their preferred coral over the odour of filefish fed a non-preferred coral, suggesting coral-specific dietary elements that influence odour are sequestered. Crabs also exhibited a similar preference for the odour of filefish fed their preferred coral and odour directly from that coral, suggesting a close chemical match. In behavioural trials, predatory cod were less attracted to filefish odour when presented alongside the coral it had been fed on, suggesting diet can reduce detectability. This is, we believe, the first evidence of diet-induced chemical crypsis in a vertebrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号