首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sepsis is characterised by a systemic dysregulated inflammatory response and oxidative stress, often leading to organ failure and death. Development of organ dysfunction associated with sepsis is now accepted to be due at least in part to oxidative damage to mitochondria. MitoQ is an antioxidant selectively targeted to mitochondria that protects mitochondria from oxidative damage and which has been shown to decrease mitochondrial damage in animal models of oxidative stress. We hypothesised that if oxidative damage to mitochondria does play a significant role in sepsis-induced organ failure, then MitoQ should modulate inflammatory responses, reduce mitochondrial oxidative damage, and thereby ameliorate organ damage. To assess this, we investigated the effects of MitoQ in vitro in an endothelial cell model of sepsis and in vivo in a rat model of sepsis. In vitro MitoQ decreased oxidative stress and protected mitochondria from damage as indicated by a lower rate of reactive oxygen species formation (P=0.01) and by maintenance of the mitochondrial membrane potential (P<0.005). MitoQ also suppressed proinflammatory cytokine release from the cells (P<0.05) while the production of the anti-inflammatory cytokine interleukin-10 was increased by MitoQ (P<0.001). In a lipopolysaccharide-peptidoglycan rat model of the organ dysfunction that occurs during sepsis, MitoQ treatment resulted in lower levels of biochemical markers of acute liver and renal dysfunction (P<0.05), and mitochondrial membrane potential was augmented (P<0.01) in most organs. These findings suggest that the use of mitochondria-targeted antioxidants such as MitoQ may be beneficial in sepsis.  相似文献   

2.
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Myocardial dysfunction, often termed sepsis-induced cardiomyopathy, is a frequent complication and is associated with worse outcomes. Numerous mechanisms contribute to sepsis-induced cardiomyopathy and a growing body of evidence suggests that bioenergetic and metabolic derangements play a central role in its development; however, there are significant discrepancies in the literature, perhaps reflecting variability in the experimental models employed or in the host response to sepsis. The condition is characterised by lack of significant cell death, normal tissue oxygen levels and, in survivors, reversibility of organ dysfunction. The functional changes observed in cardiac tissue may represent an adaptive response to prolonged stress that limits cell death, improving the potential for recovery. In this review, we describe our current understanding of the pathophysiology underlying myocardial dysfunction in sepsis, with a focus on disrupted mitochondrial processes.  相似文献   

3.
Myocardial dysfunction in sepsis has been linked to inflammation caused by pathogen-associated molecular patterns (PAMPs) as well as by host danger-associated molecular patterns (DAMPs). These include soluble heparan sulfate (HS), which triggers the devastating consequences of the pro-inflammatory cascades in severe sepsis and septic shock. Thus, there is increasing interest in the development of anti-infective agents, with effectiveness against both PAMPs and DAMPs. We hypothesized that a synthetic antimicrobial peptide (peptide 19-2.5) inhibits inflammatory response in murine cardiomyocytes (HL-1 cells) stimulated with PAMPs, DAMPs or serum from patients with septic shock by reduction and/or neutralization of soluble HS. In the current study, our data indicate that the treatment with peptide 19-2.5 decreases the inflammatory response in HL-1 cells stimulated with either PAMPs or DAMPs. Furthermore, our work shows that soluble HS in serum from patients with Gram-negative or Gram-positive septic shock induces a strong pro-inflammatory response in HL-1 cells, which can be effectively blocked by peptide 19-2.5. Based on these findings, peptide 19-2.5 is a novel anti-inflammatory agent interacting with both PAMPs and DAMPs, suggesting peptide 19-2.5 may have the potential for further development as a broad-spectrum anti-inflammatory agent in sepsis-induced myocardial inflammation and dysfunction.  相似文献   

4.
5.
Sepsis is life-threatening organ dysfunction caused by a dysregulated inflammatory and immune response to infection. Sepsis involves the combination of exaggerated inflammation and immune suppression. During systemic infection and sepsis, the liver works as a lymphoid organ with key functions in regulating the immune response. Extracellular nucleotides are considered damage-associated molecular patterns and are involved in the control of inflammation. Their levels are finely tuned by the membrane-associated ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) enzyme family. Although previous studies have addressed the role of NTPDase1 (CD39), the role of the other extracellular NTPDases, NTPDase2, -3, and -8, in sepsis is unclear. In the present studies we identified NTPDase8 as a top downregulated gene in the liver of mice submitted to cecal ligation-induced sepsis. Immunohistochemical analysis confirmed the decrease of NTPDase8 expression at the protein level. In vitro mechanistic studies using HepG2 hepatoma cells demonstrated that IL-6 but not TNF, IL-1β, bacteria, or lipopolysaccharide are able to suppress NTPDase8 gene expression. NTPDase8, as well as NTPDase2 and NTPDase3 mRNA was downregulated, whereas NTPDase1 (CD39) mRNA was upregulated in polymorphonuclear leukocytes from both inflamed and septic patients compared to healthy controls. Although the host’s inflammatory response of polymicrobial septic NTPDase8 deficient mice was no different from that of wild-type mice, IL-6 levels in NTPDase8 deficient mice were higher than IL-6 levels in wild-type mice with pneumonia. Altogether, the present data indicate that extracellular NTPDases are differentially regulated during sepsis.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11302-021-09819-1.  相似文献   

6.
Using a mitochondria-targeted vitamin E (Mito-Vit-E) in a rat pneumonia-related sepsis model, we examined the role of mitochondrial reactive oxygen species in sepsis-mediated myocardial inflammation and subsequent cardiac contractile dysfunction. Sepsis was produced in adult male Sprague-Dawley rats via intratracheal injection of S. pneumonia (4 × 10(6) colony formation units per rat). A single dose of Mito-Vit-E, vitamin E, or control vehicle, at 21.5 μmol/kg, was administered 30 min postinoculation. Blood was collected, and heart tissue was harvested at various time points. Mito-Vit-E in vivo distribution was confirmed by mass spectrometry. In cardiac mitochondria, Mito-Vit-E improved total antioxidant capacity and suppressed H(2)O(2) generation, whereas vitamin E offered little effect. In cytosol, both antioxidants decreased H(2)O(2) levels, but only vitamin E strengthened antioxidant capacity. Mito-Vit-E protected mitochondrial structure and function in the heart during sepsis, demonstrated by reduction in lipid and protein oxidation, preservation of mitochondrial membrane integrity, and recovery of respiratory function. While both Mito-Vit-E and vitamin E suppressed sepsis-induced peripheral and myocardial production of proinflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6), Mito-Vit-E exhibited significantly higher efficacy (P < 0.05). Stronger anti-inflammatory action of Mito-Vit-E was further shown by its near-complete inhibition of sepsis-induced myeloperoxidase accumulation in myocardium, suggesting its effect on neutrophil infiltration. Echocardiography analysis indicated that Mito-Vit-E ameliorated cardiac contractility of sepsis animals, shown by improved fractional shortening and ejection fraction. Together, our data suggest that targeted scavenging of mitochondrial reactive oxygen species protects mitochondrial function, attenuates tissue-level inflammation, and improves whole organ activities in the heart during sepsis.  相似文献   

7.
Sepsis is the leading cause of death in critically ill patients. While myocardial dysfunction has been recognized as a major manifestation in severe sepsis, the underlying molecular mechanisms associated with septic cardiomyopathy remain unclear. In this study, we performed a miRNA array analysis in hearts collected from a severe septic mouse model induced by cecal ligation and puncture (CLP). Among the 19 miRNAs that were dys-regulated in CLP-mouse hearts, miR-223(3p) and miR-223*(5p) were most significantly downregulated, compared with sham-operated mouse hearts. To test whether a drop of miR-223 duplex plays any roles in sepsis-induced cardiac dysfunction and inflammation, a knockout (KO) mouse model with a deletion of the miR-223 gene locus and wild-type (WT) mice were subjected to CLP or sham surgery. We observed that sepsis-induced cardiac dysfunction, inflammatory response and mortality were remarkably aggravated in CLP-treated KO mice, compared with control WTs. Using Western-blotting and luciferase reporter assays, we identified Sema3A, an activator of cytokine storm and a neural chemorepellent for sympathetic axons, as an authentic target of miR-223* in the myocardium. In addition, we validated that miR-223 negatively regulated the expression of STAT-3 and IL-6 in mouse hearts. Furthermore, injection of Sema3A protein into WT mice revealed an exacerbation of sepsis-triggered inflammatory response and myocardial depression, compared with control IgG1 protein-treated WT mice following CLP surgery. Taken together, these data indicate that loss of miR-223/-223* causes an aggravation of sepsis-induced inflammation, myocardial dysfunction and mortality. Our study uncovers a previously unrecognized mechanism underlying septic cardiomyopathy and thereby, may provide a new strategy to treat sepsis.  相似文献   

8.
The aim of this study is to investigate the mechanism underling cardiac dysfunction during sepsis, as well as the possible amelioration of this dysfunction by exogenous carbon monoxide (CO) administration. For this purpose, rats (six-week-old, male, Sprague-Dawley) were administered LPS (15 mg/kg body weight, i.p. 6 h) and/or CORM (30 mg/kg, i.p.). The decreased left ventricular ejection fraction (EF) observed in LPS group rats was recovered in the LSP + CORM group, confirming the protective role of CO against sepsis-induced myocardial depression. Proteomic as well as immunoblot analysis showed that the levels of myosin heavy and light chains (MHC and MLC) as well as α-cardiac actin (ACTC) were decreased in the LPS group, and these decreases were mitigated in the LSP + CORM group, suggesting that the amounts of major contractile proteins are decreased in depressed myocardium. Not only LPS-induced inflammatory cytokine (TNFα and IL-1β) production but also the decrease in myofilament proteins was mitigated by CORM. These results confirm the protective action of exogenously administered CO against myocardial depression during sepsis, and reveal a novel mechanism underling cardiac dysfunction during sepsis.  相似文献   

9.
BackgroundSepsis is a life-threatening condition caused by a dysregulated host response to infection. Several studies have indicated that flavonoids exhibit a wide variety of biological actions including free radical scavenging and antioxidant activities. Quercetin, one of the most extensively distributed flavonoids in the vegetables and fruits, presents various biological activities including modulation of oxidative stress, anti-infectious, anti-inflammatory, and neuroprotective activities.MethodsThe present systematic review was conducted according to the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statements. We searched Web of Sciences, Google Scholar, PubMed, Scopus, and Embase databases up to February 2021 by using the relevant keywords.ResultsOut of 672 records screened, 35 articles met the study criteria. The evidence reviewed here indicates that quercetin supplementation may exert beneficial effects on sepsis by attenuating inflammation and oxidative stress, downregulating the mRNA expression of toll-like receptors (TLRs), modulating the immune response, and alleviating sepsis-related organ dysfunctions.ConclusionDue to the promising therapeutic effects of quercetin on sepsis complications and the lack of clinical trials in this regard, future human randomized clinical trials are warranted.  相似文献   

10.
Liver injury and dysregulated glucose homoeostasis are common manifestations during sepsis. Although plenty of studies reported insulin could protect against multiple organ injuries caused by critical infections among patients, little was known about the precise mechanism. We investigated whether liver inflammatory pathway and central neuropeptides were involved in the process. In sepsis rats, hepatic IKK/NF‐κB pathway and STAT3 were strongly activated, along with reduced body weight, blood glucose and suppressed hepatic gluconeogenesis (GNG). Peripheral insulin administration efficiently attenuated liver dysfunction and glucose metabolic disorders by suppressing hypothalamic anorexigenic neuropeptide proopiomelanocortin (POMC) expression, hepatic NF‐κB pathway and STAT3 phosphorylation. Furthermore, knockdown of hypothalamic POMC significantly diminished protective effect of insulin on hepatic GNG and insulin‐induced STAT3 inactivation, but not inflammation or IKK/NF‐κB pathway. These results suggest that hepatic IKK/NF‐κB pathway mediates the anti‐inflammatory effect of insulin in septic rats, and peripheral insulin treatment may improve hepatic GNG by inhibiting STAT3 phosphorylation dependent on hypothalamic POMC expression.  相似文献   

11.
Sepsis and other critical illnesses are associated with increased permeability of the intestinal mucosa. Loss of mucosal integrity may lead to multiple organ failure in these conditions. We tested the hypothesis that induction of the heat shock response reduces sepsis-induced increase in intestinal permeability. The heat shock response was induced in mice by intraperitoneal injection of 10 mg/kg sodium arsenite. Two hours later, at which time mucosal heat shock protein 72 levels were increased, sepsis was induced by cecal ligation and puncture (CLP) or sham operation was performed. Sixteen hours after sham operation or CLP, intestinal permeability was determined by measuring the appearance in blood of 4.4-kDa fluorescein isothiocyanate-conjugated dextran and 40-kDa horseradish peroxidase administered by gavage. Sepsis resulted in increased mucosal permeability for both markers, and this effect of sepsis was substantially reduced in mice treated with sodium arsenite. Plasma levels of the anti-inflammatory cytokine interleukin (IL)-10 were increased in septic mice pretreated with sodium arsenite, and the protective effect of sodium arsenite on intestinal permeability in septic mice was reversed by treatment with anti-IL-10 antibody. The present results suggest that sepsis-induced increase in mucosal permeability can be reduced by the heat shock response and that increased IL-10 levels may be involved in the protective effects of the heat shock response.  相似文献   

12.
Sepsis-induced acute lung injury is associated with dysregulated inflammatory reactions. MiR-19b-3p level was reported to be downregulated in patients with sepsis. To evaluate the role of miR-19b-3p in sepsis, cecum ligation and puncture-induced mouse sepsis model and lpopolysaccharide (LPS)-treated pulmonary microvascular endothelial cells (PMVECs) were used. For in vivo study, lung tissue was harvested for hematoxylin and eosin (H&E) staining, tumor necrosis factor-α, interleukin-6 (IL-6), IL-1β, and p-p65, p-IκB measuring. Cell apoptosis was assessed by TUNEL assay. For in vitro study, cell proliferation and apoptosis were detected by CCK-8 and flow cytometry, respectively. Methylation of miR-19b-3p promoter was measured by methylation-specific PCR (MSP) assay. The target of miR-19b-3p was determined by dual-luciferase reporter gene assay. The level of miR-19b-3p was determined to be downregulated in vitro and in vivo. In addition, miR-19b-3p protected mice from inflammation injury through inhibiting NF-κB signaling pathway. Overexpression of miR-19b-3p increased cell viability, decreased apoptosis, and proinflammatory cytokines secretion in LPS-treated PMVECs. Besides these, Krüppel-like factor 7 (KLF7) was confirmed as the target of miR-19b-3p. And methylation of miR-19b-3p was the reason of decreased miR-19b-3p level. In conclusion, miR-19b-3p protected cells from sepsis-induced inflammation injury via inhibiting NF-κB signaling pathway, and KLF7 was a potential target.  相似文献   

13.
脓毒症是由宿主对感染的反应失调引起的危及生命的器官功能障碍.对于脓毒症的治疗主要是抗感染、抗休克、维持机体组织器官灌注等.但近年来,在对脓毒症诱导的组织器官功能障碍的研究中发现,脓毒症时出现多器官功能障碍的原因不仅在于组织器官的缺血缺氧,而且与线粒体通透性转换孔(mitochondrial permeability t...  相似文献   

14.
Lin J  Yan GT  Xue H  Hao XH  Zhang K  Wang LH 《Peptides》2007,28(8):1553-1560
In this research, the role of leptin on sepsis-induced organ dysfunction was evaluated. Making use of a mice sepsis model, changes of alanine transaminase and uric acid in serum, myeloperoxidase activity, leptin levels and histological alterations in heart, lung, liver and kidney were determined. Results showed that sepsis induced significantly higher levels of serum alanine transaminase and uric acid, decreased tissue myeloperoxidase activity and leptin levels, and triggered distinct histological alterations. However, leptin and indomethacin injections reversed those impairments at 6h and/or 12h after injury. These data reveal a protective role of both leptin and indomethacin on vital organ functions after sepsis by recovering tissue myeloperoxidase activity.  相似文献   

15.
脓毒症是由致病微生物感染引发的全身炎症反应综合征(SIRS),合并血压降低且经快速液体复苏后血压仍不能恢复正常者 称为脓毒性休克(Septic shock),其中一部分患者发展为多器官功能障碍综合症(MODS)。脓毒症病死率居高不下。每10 万人口中 约50-300 人会发生严重脓毒症,其短期死亡率达20%-25%,当发展为脓毒性休克时其死亡率达50%。整合消灭致病微生物、阻断 炎症介质和处理MODS等措施的" 集束化"治疗并未显著降低脓毒症患者的病死率。糖皮质激素具有强大的抗炎作用,但诸多 的临床研究对糖皮质激素疗效的评价褒贬不一,糖皮质激素是否有利于脓毒症的转归一直饱受争议[3]。本文仅就糖皮质激素在 严重脓毒症及脓毒性休克中的治疗进展综述如下,并希望能进一步探讨发生严重脓毒症及脓毒性休克时,机体对糖皮质激素反 应复杂性的原因,以及在以后的研究中对相对肾上腺皮质功能不全的诊断标准及对糖皮质激素用药和停药时机的选择更加明确。  相似文献   

16.
《Cytotherapy》2023,25(6):625-639
Background aimsSepsis is a potentially life-threatening disease that results from a severe systemic inflammatory response due to infection. Mesenchymal stromal cell-derived small extracellular vesicles (MSC sEVs) are able to transfer bioactive molecules and have been demonstrated to play an important role in the pathophysiological process of sepsis. Herein the authors aimed to investigate the potential role and downstream molecular mechanism of MSC sEVs in sepsis.MethodsMSC sEVs were acquired by ultracentrifugation and then injected into a cecal ligation and puncture mouse model. The efficacy of MSC sEVs in both in vitro and in vivo models of sepsis was evaluated.ResultsMSC sEV therapy improved survival, reduced sepsis-induced inflammation, attenuated pulmonary capillary permeability and improved liver and kidney function in septic mice. In addition, the authors found that microRNA-21a-5p (miR-21a-5p) was highly enriched in MSC sEVs, could be transferred to recipient cells, inhibited inflammation and increased survival in septic mice. Furthermore, the authors demonstrated that MSC sEV miR-21a-5p suppressed inflammation by targeting toll-like receptor 4 and programmed cell death 4. The therapeutic efficacy of MSC sEVs was partially abrogated by transfection with miR-21a-5p inhibitors.ConclusionsCollectively, the authors’ data suggest that miR-21a-5p-bearing MSC sEVs may be a prospective and effective sepsis therapeutic strategy.  相似文献   

17.
Highly inducible heme oxygenase (HO)-1 is protective against acute and chronic inflammation. HO-1 generates carbon monoxide (CO), ferrous iron, and biliverdin. The aim of this study was to investigate the protective effects of biliverdin against sepsis-induced inflammation and intestinal dysmotility. Cecal ligation and puncture (CLP) was performed on Sprague-Dawley rats under isoflurane anesthesia with and without intraperitoneal biliverdin injections, which were done before, at the time of CLP, and after CLP. In vivo gastrointestinal transit was carried out with fluorescein-labeled dextran. Jejunal circular muscle contractility was quantified in vitro using organ bath-generated bethanechol dose-response curves. Neutrophilic infiltration into the muscularis externa was quantified. The jejunal muscularis was studied for cytokine mRNA expressions [interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, inducible nitric oxide synthase, cyclooxygenase-2, biliverdin, IL-10, and HO-1] using real-time RT-PCR. Biliverdin treatment prevented the sepsis-induced suppression of gastrointestinal muscle contractility in vivo and in vitro and significantly decreased neutrophilic infiltration into the jejunal muscularis. Inflammatory mRNA expressions for small bowel IL-6 and MCP-1 were significantly reduced after biliverdin treatment in CLP-induced septic animals compared with untreated septic animals. The anti-inflammatory mediator expression of small bowel IL-10 was significantly augmented after CLP at 3 h compared with untreated septic animals. These findings demonstrate that biliverdin attenuates sepsis-induced morbidity to the intestine by selectively modulating the inflammatory cascade and its subsequent sequelae on intestinal muscularis function.  相似文献   

18.
Crouser ED 《Mitochondrion》2004,4(5-6):729-741
Sepsis is the leading cause of death in medical intensive care units. In most fatal cases of sepsis the patient experiences an insidious, progressive decline in vital organ function, i.e. multiple organ dysfunction syndrome (MODS), which is commonly associated with signs of accelerated anaerobic metabolism despite supernormal systemic oxygen delivery. Based on this clinical scenario, tissue hypoxia has long been considered the putative mechanism of MODS. However, efforts to enhance tissue oxygenation during severe sepsis have proved ineffective, and a growing body of evidence indicates that mitochondria contribute significantly to the pathogenesis of sepsis-induced MODS. In addition to dysregulation of oxygen metabolism ('cytopathic hypoxia'), sepsis-induced mitochondrial dysfunction contributes to organ injury through accelerated oxidant production and by promoting cell death. Advances in our understanding of the mechanisms of mitochondrial damage and in its detection could revolutionize the management of this devastating disease.  相似文献   

19.
Hydrogen sulfide (H(2)S) has been shown to induce transient receptor potential vanilloid 1 (TRPV1)-mediated neurogenic inflammation in polymicrobial sepsis. However, endogenous neural factors that modulate this event and the molecular mechanism by which this occurs remain unclear. Therefore, this study tested the hypothesis that whether substance P (SP) is one important neural element that implicates in H(2)S-induced neurogenic inflammation in sepsis in a TRPV1-dependent manner, and if so, whether H(2)S regulates this response through activation of the extracellular signal-regulated kinase-nuclear factor-κB (ERK-NF-κB) pathway. Male Swiss mice were subjected to cecal ligation and puncture (CLP)-induced sepsis and treated with TRPV1 antagonist capsazepine 30 minutes before CLP. DL-propargylglycine (PAG), an inhibitor of H(2)S formation, was administrated 1 hour before or 1 hour after sepsis, whereas sodium hydrosulfide (NaHS), an H(2)S donor, was given at the same time as CLP. Capsazepine significantly attenuated H(2)S-induced SP production, inflammatory cytokines, chemokines, and adhesion molecules levels, and protected against lung and liver dysfunction in sepsis. In the absence of H(2)S, capsazepine caused no significant changes to the PAG-mediated attenuation of lung and plasma SP levels, sepsis-associated systemic inflammatory response and multiple organ dysfunction. In addition, capsazepine greatly inhibited phosphorylation of ERK(1/2) and inhibitory κBα, concurrent with suppression of NF-κB activation even in the presence of NaHS. Furthermore, capsazepine had no effect on PAG-mediated abrogation of these levels in sepsis. Taken together, the present findings show that H(2)S regulates TRPV1-mediated neurogenic inflammation in polymicrobial sepsis through enhancement of SP production and activation of the ERK-NF-κB pathway.  相似文献   

20.
Cellular energetic metabolism in sepsis: the need for a systems approach   总被引:1,自引:0,他引:1  
Sepsis is a complex pathophysiological disorder arising from a systemic inflammatory response to infection. Patients are clinically classified according to the presence of signs of inflammation alone, multiple organ failure (MOF), or organ failure plus hypotension (septic shock). The organ damage that occurs in MOF is not a direct effect of the pathogen itself, but rather of the dysregulated inflammatory response of the patient. Although mechanisms underlying MOF are not completely understood, a disruption in cellular energetic metabolism is increasingly implicated. In this review, we describe how various factors affecting cellular ATP supply and demand appear to be altered in sepsis, and how these vary through the timecourse. We will emphasise the need for an integrated systems approach to determine the relative importance of these factors in both the failure and recovery of different organs. A modular framework is proposed that can be used to assess the control hierarchy of cellular energetics in this complex pathophysiological condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号