首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response regulator AlgR is required for both alginate biosynthesis and type IV fimbria-mediated twitching motility in Pseudomonas aeruginosa. In this study, the roles of AlgR signal transduction and phosphorylation in twitching motility and biofilm formation were examined. The predicted phosphorylation site of AlgR (aspartate 54) and a second aspartate (aspartate 85) in the receiver domain of AlgR were mutated to asparagine, and mutant algR alleles were introduced into the chromosome of P. aeruginosa strains PAK and PAO1. Assays of these mutants demonstrated that aspartate 54 but not aspartate 85 of AlgR is required for twitching motility and biofilm initiation. However, strains expressing AlgR D85N were found to be hyperfimbriate, indicating that both aspartate 54 and aspartate 85 are involved in fimbrial biogenesis and function. algD mutants were observed to have wild-type twitching motility, indicating that AlgR control of twitching motility is not mediated via its role in the control of alginate biosynthesis. In vitro phosphorylation assays showed that AlgR D54N is not phosphorylated by the enteric histidine kinase CheA. These findings indicate that phosphorylation of AlgR most likely occurs at aspartate 54 and that aspartate 54 and aspartate 85 of AlgR are required for the control of the molecular events governing fimbrial biogenesis, twitching motility, and biofilm formation in P. aeruginosa.  相似文献   

2.
3.
4.
5.
Burkholderia glumae is a plant pathogenic bacterium that uses an acyl-homoserine lactone-mediated quorum sensing system to regulate protein secretion, oxalate production and major virulence determinants such as toxoflavin and flagella. B. glumae also releases surface-active rhamnolipids. In Pseudomonas aeruginosa and Burkholderia thailandensis, rhamnolipids, along with flagella, are required for the social behavior called swarming motility. In the present study, we demonstrate that quorum sensing positively regulates the production of rhamnolipids in B. glumae and that rhamnolipids are necessary for swarming motility also in this species. We show that a rhlA- mutant, which is unable to produce rhamnolipids, loses its ability to swarm, and that this can be complemented by providing exogenous rhamnolipids. Impaired rhamnolipid production in a quorum sensing-deficient B. glumae mutant is the main factor responsible for its defective swarming motility behaviour.  相似文献   

6.
7.
8.
9.
Pseudomonas aeruginosa PAO1 produces the biodetergent rhamnolipid and secretes it into the extracellular environment. The role of rhamnolipids in the life cycle and pathogenicity of P. aeruginosa has not been completely understood, but they are known to affect outer membrane composition, cell motility, and biofilm formation. This report is focused on the influence of the outer membrane-bound esterase EstA of P. aeruginosa PAO1 on rhamnolipid production. EstA is an autotransporter protein which exposes its catalytically active esterase domain on the cell surface. Here we report that the overexpression of EstA in the wild-type background of P. aeruginosa PAO1 results in an increased production of rhamnolipids whereas an estA deletion mutant produced only marginal amounts of rhamnolipids. Also the known rhamnolipid-dependent cellular motility and biofilm formation were affected. Although only a dependence of swarming motility on rhamnolipids has been known so far, the other kinds of motility displayed by P. aeruginosa PAO1, swimming and twitching, were also affected by an estA mutation. In order to demonstrate that EstA enzyme activity is responsible for these effects, inactive variant EstA* was constructed by replacement of the active serine by alanine. None of the mutant phenotypes could be complemented by expression of EstA*, demonstrating that the phenotypes affected by the estA mutation depend on the enzymatically active protein.  相似文献   

10.
Pseudomonas aeruginosa is capable of moving by swimming, swarming, and twitching motilities. In this study, we investigated the effects of fatty acids on Pseudomonas aeruginosa PAO1 motilities. A branched-chain fatty acid (BCFA)--12-methyltetradecanoic acid (anteiso-C15:0)--has slightly repressed flagella-driven swimming motility and completely inhibited a more complex type of surface motility, i.e. swarming, at a concentration of 10 microg mL(-1). In contrast, anteiso-C15:0 exhibited no effect on pili-mediated twitching motility. Other BCFAs and unsaturated fatty acids tested in this study showed similar inhibitory effects on swarming motility, although the level of inhibition differed between these fatty acids. These fatty acids caused no significant growth inhibition in liquid cultures. Straight-chain saturated fatty acids such as palmitic acid were less effective in swarming inhibition. The wetness of the PAO1 colony was significantly reduced by the addition of anteiso-C15:0; however, the production of rhamnolipids as a surface-active agent was not affected by the fatty acid. In addition to motility repression, anteiso-C15:0 caused 31% repression of biofilm formation by PAO1, suggesting that BCFA could affect the multiple cellular activities of Pseudomonas aeruginosa.  相似文献   

11.
In Pseudomonas aeruginosa PAO1, the pvdQ gene has been shown to have at least two functions. It encodes the acylase enzyme and hydrolyzes 3-oxo-C12-HSL, the key signaling molecule of quorum sensing system. In addition, pvdQ is involved in swarming motility. It is required and up-regulated during swarming motility, which is triggered by high cell densities. As high density bacterial populations also display elevated antibiotics resistance, studies have demonstrated swarm-cell differentiation in P. aeruginosa promotes increased resistance to various antibiotics. PvdQ acts as a signal during swarm-cell differentiation, and thus may play a role in P. aeruginosa antibiotic resistance. The aim of this study was to examine whether pvdQ was involved in modifying antibiotic susceptibility during swarming conditions and to investigate the mechanism by which this occurred. We constructed the PAO1pMEpvdQ strain, which overproduces PvdQ. PAO1pMEpvdQ promotes swarming motility, while PAO1ΔpvdQ abolishes swarming motility. In addition, both PAO1 and PAO1pMEpvdQ acquired resistance to ceftazidime, ciprofloxacin, meropenem, polymyxin B, and gentamicin, though PAO1pMEpvdQ exhibited a twofold to eightfold increase in antibiotic resistance compared to PAO1. These results indicate that pvdQ plays an important role in elevating antibiotic resistance via swarm-cell differentiation and possibly other mechanisms as well. We analyzed outer membrane permeability. Our data also suggest that pvdQ decreases P. aeruginosa outer membrane permeability, thereby elevating antibiotic resistance under swarming conditions. Our results suggest new approaches for reducing P. aeruginosa resistance.  相似文献   

12.
13.
The intracellular signaling molecule cyclic-di-GMP (c-di-GMP) has been shown to influence surface-associated behaviors of Pseudomonas aeruginosa, including biofilm formation and swarming motility. Previously, we reported a role for the bifA gene in the inverse regulation of biofilm formation and swarming motility. The bifA gene encodes a c-di-GMP-degrading phosphodiesterase (PDE), and the ΔbifA mutant exhibits increased cellular pools of c-di-GMP, forms hyperbiofilms, and is unable to swarm. In this study, we isolated suppressors of the ΔbifA swarming defect. Strains with mutations in the pilY1 gene, but not in the pilin subunit pilA gene, show robust suppression of the swarming defect of the ΔbifA mutant, as well as its hyperbiofilm phenotype. Despite the ability of the pilY1 mutation to suppress all the c-di-GMP-related phenotypes, the global pools of c-di-GMP are not detectably altered in the ΔbifA ΔpilY1 mutant relative to the ΔbifA single mutant. We also show that enhanced expression of the pilY1 gene inhibits swarming motility, and we identify residues in the putative VWA domain of PilY1 that are important for this phenotype. Furthermore, swarming repression by PilY1 specifically requires the diguanylate cyclase (DGC) SadC, and epistasis analysis indicates that PilY1 functions upstream of SadC. Our data indicate that PilY1 participates in multiple surface behaviors of P. aeruginosa, and we propose that PilY1 may act via regulation of SadC DGC activity but independently of altering global c-di-GMP levels.Pseudomonas aeruginosa forms surface-attached communities known as biofilms, and this microbe is also capable of surface-associated motility, including twitching and swarming. The mechanism by which cells regulate and coordinate these various surface-associated behaviors, or how these microbes transition from one surface behavior to another, has yet to be elucidated. Given that P. aeruginosa is capable of such diverse surface-associated lifestyles, this Gram-negative organism serves as a useful model to address questions regarding the regulation of surface-associated behaviors.Recent studies indicate that biofilm formation and swarming motility by P. aeruginosa are inversely regulated via a common pathway (12, 27, 37). Important factors that influence early biofilm formation by P. aeruginosa strain PA14 include control of flagellar motility and the robust production of the Pel exopolysaccharide (EPS). Swarming occurs when cells move across a hydrated, viscous semisolid surface, and like biofilm formation, flagellar function is important for this surface-associated motility. Additionally, swarming requires production of rhamnolipid surfactant acting as a surface-wetting agent (25, 58). In contrast to biofilm formation, swarming motility is enhanced in strains which are defective for the production of Pel EPS (12).The inverse regulation of biofilm formation and swarming motility is reminiscent of the regulation of sessile and motile behaviors that occurs in a wide range of bacterial species via the intracellular signaling molecule cyclic-di-GMP (c-di-GMP) (17, 24, 50, 51, 56). High levels of this signaling molecule promote sessile behaviors and inhibit motility, whereas low levels of c-di-GMP favor motile behaviors (8, 9, 22, 56). Recently, we reported that the BifA phosphodiesterase, which catalyzes the breakdown of c-di-GMP, inversely regulates biofilm formation and swarming motility (27). In addition, Merritt et al. reported that SadC, a diguanylate cyclase (DGC) which synthesizes c-di-GMP, participates with BifA to modulate cellular c-di-GMP levels and thus regulate biofilm formation and swarming motility (37).Consistent with a role for BifA as a c-di-GMP phosphodiesterase, ΔbifA mutants exhibit increased cellular pools of c-di-GMP relative to the wild type (WT) (27). Phenotypically, ΔbifA mutants form hyperbiofilms and are unable to swarm. The hyperbiofilm phenotype of the ΔbifA mutant results largely from increased synthesis of the pel-derived polysaccharide; that is, the ΔbifAΔpel double mutant shows a marked decrease in biofilm formation compared to the ΔbifA mutant (27). Interestingly, elevated Pel polysaccharide production alone is not sufficient to explain the swarming defect of the ΔbifA mutant, as the ΔbifAΔpel double mutant recovers only minimal swarming ability (27). These data indicate that high levels of c-di-GMP inhibit swarming motility in a largely Pel-independent manner.To better understand how elevated c-di-GMP levels in the cell inhibit swarming motility, we exploited the swarming defect of the ΔbifA mutant, and using a genetic screen, we identified suppressors in the ΔbifA background that restored the ability to swarm. Here we report a role for the PilY1 protein in repression of swarming motility in the ΔbifA mutant background. Our data are consistent with a model in which PilY1 functions upstream of the c-di-GMP diguanylate cyclase SadC to regulate swarming motility by P. aeruginosa.  相似文献   

14.
15.
16.
Pseudomonas aeruginosa exhibits swarming motility on 0.5 to 1% agar plates in the presence of specific carbon and nitrogen sources. We have found that PAO1 double mutants expressing neither flagella nor type IV pili (fliC pilA) display sliding motility under the same conditions. Sliding motility was inhibited when type IV pilus expression was restored; like swarming motility, it also decreased in the absence of rhamnolipid surfactant production. Transposon insertions in gacA and gacS increased sliding motility and restored tendril formation to spreading colonies, while transposon insertions in retS abolished motility. These changes in motility were not accompanied by detectable changes in rhamnolipid surfactant production or by the appearance of bacterial surface structures that might power sliding motility. We propose that P. aeruginosa requires flagella during swarming to overcome adhesive interactions mediated by type IV pili. The apparent dependence of sliding motility on environmental cues and regulatory pathways that also affect swarming motility suggests that both forms of motility are influenced by similar cohesive factors that restrict translocation, as well as by dispersive factors that facilitate spreading. Studies of sliding motility may be particularly well-suited for identifying factors other than pili and flagella that affect community behaviors of P. aeruginosa.  相似文献   

17.
Quorum sensing (QS) has been a novel target for the treatment of infectious diseases. Here structural analogs of Pseudomonas aeruginosa autoinducer N-acyl homoserine lactone (AHL) were investigated for QS inhibitor (QSI) activity and a novel QSI was discovered, N-decanoyl-L-homoserine benzyl ester (C2). Virulence assays showed that C2 down-regulated total protease and elastase activities, as well as the production of rhamnolipid, that are controlled by QS in P. aeruginosa wild-type strain PAO1 without affecting growth. C2 was also shown to inhibit swarming motility of PAO1. Using a microdilution checkerboard method, we identified synergistic interactions between C2 and several antibiotics, tobramycin, gentamycin, cefepime, and meropenem. Data from real-time RT-PCR suggested that C2 inhibited the expression of lasR (29.67%), lasI (21.57%), rhlR (28.20%), and rhlI (29.03%).  相似文献   

18.
19.
20.
Pseudomonas aeruginosa uses type IV pili to colonize various materials and for surface-associated twitching motility. We previously identified five phylogenetically distinct alleles of pilA in P. aeruginosa, four of which occur in genetic cassettes with specific accessory genes (J. V. Kus, E. Tullis, D. G. Cvitkovitch, and L. L. Burrows, Microbiology 150:1315-1326, 2004). Each of the five pilin alleles, with and without its associated pilin accessory gene, was used to complement a group II PAO1 pilA mutant. Expression of group I or IV pilA genes restored twitching motility to the same extent as the PAO1 group II pilin. In contrast, poor twitching resulted from complementation with group III or group V pilA genes but increased significantly when the cognate tfpY or tfpZ accessory genes were cointroduced. The enhanced motility was linked to an increase in recoverable surface pili and not to alterations in total pilin pools. Expression of the group III or V pilins in a PAO1 pilA-pilT double mutant yielded large amounts of surface pili, regardless of the presence of the accessory genes. Therefore, poor piliation in the absence of the TfpY and TfpZ accessory proteins results from a net increase in PilT-mediated retraction. Similar phenotypes were observed for tfpY single and tfpY-pilT double knockout mutants of group III strain PA14. A PilAV-TfpY chimera produced few surface pili, showing that the accessory proteins are specific for their cognate pilin. The genetic linkage between specific pilin and accessory genes may be evolutionarily conserved because the accessory proteins increase pilus expression on the cell surface, thereby enhancing function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号