首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction  

MicroRNAs (miRNAs), endogenous small noncoding RNAs regulating the activities of target mRNAs and cellular processes, are present in human plasma in a stable form. In this study, we investigated whether miRNAs are also stably present in synovial fluids and whether plasma and synovial fluid miRNAs could be biomarkers of rheumatoid arthritis (RA) and osteoarthritis (OA).  相似文献   

2.
Reduced inflammation, increased insulin sensitivity, and protection against cancer are shared between humans and mice with GH/IGF1 deficiency. Beyond hormone levels, miRNAs are important regulators of metabolic changes associated with healthy aging. We hypothesized that GH deficiency in humans alters the abundance of circulating miRNAs and that a subset of those miRNAs may overlap with those found in GH‐deficient mice. In this study, subjects with untreated congenital isolated GH deficiency (IGHD; n = 23) and control subjects matched by age and sex (n = 23) were recruited and serum was collected for miRNA sequencing. Serum miRNAs from young (6 month) and old (22 month) Ames dwarf (df/df) mice with GH deficiency and their WT littermates (n = 5/age/genotype group) were used for comparison. We observed 14 miRNAs regulated with a genotype by age effect and 19 miRNAs regulated with a genotype effect independent of age in serum of IGHD subjects. These regulated miRNAs are known for targeting pathways associated with longevity such as mTOR, insulin signaling, and FoxO. The aging function was overrepresented in IGHD individuals, mediated by hsa‐miR‐31, hsa‐miR‐146b, hsa‐miR‐30e, hsa‐miR‐100, hsa‐miR‐181b‐2, hsa‐miR‐195, and hsa‐miR‐181b‐1, which target the FoxO and mTOR pathways. Intriguingly, miR‐181b‐5p, miR‐361‐3p, miR‐144‐3p, and miR‐155‐5p were commonly regulated in the serum of humans and GH‐deficient mice. In vitro assays confirmed target genes for the main up‐regulated miRNAs, suggesting miRNAs regulated in IGHD individuals can regulate the expression of age‐related genes. These findings indicate that systemic miRNAs regulated in IGHD individuals target pathways involved in aging in both humans and mice.  相似文献   

3.
In order to explore the proteomic signatures of epicardial adipose tissue (EAT) related to the mechanism of heart failure with reduced and mildly reduced ejection fraction (HFrEF/HFmrEF) and heart failure (HF) with preserved ejection fraction (HFpEF), a comprehensive proteomic analysis of EAT was made in HFrEF/HFmrEF (n = 5) and HFpEF (n = 5) patients with liquid chromatography–tandem mass spectrometry experiments. The selected differential proteins were verified between HFrEF/HFmrEF (n = 20) and HFpEF (n = 40) by ELISA (enzyme-linked immunosorbent assay). A total of 599 EAT proteins were significantly different in expression between HFrEF/HFmrEF and HFpEF. Among the 599 proteins, 58 proteins increased in HFrEF/HFmrEF compared to HFpEF, whereas 541 proteins decreased in HFrEF/HFmrEF. Of these proteins, TGM2 in EAT was down-regulated in HFrEF/HFmrEF patients and was confirmed to decrease in circulating plasma of the HFrEF/HFmrEF group (p = 0.019). Multivariate logistic regression analysis confirmed plasma TGM2 could be an independent predictor of HFrEF/HFmrEF (p = 0.033). Receiver operating curve analysis indicated that the combination of TGM2 and Gensini score improved the diagnostic value of HFrEF/HFmrEF (p = 0.002). In summary, for the first time, we described the proteome in EAT in both HFpEF and HFrEF/HFmrEF and identified a comprehensive dimension of potential targets for the mechanism behind the EF spectrum. Exploring the role of EAT may offer potential targets for preventive intervention of HF.  相似文献   

4.
5.
6.
《Reproductive biology》2022,22(4):100695
MicroRNAs (miRNAs) derived from the pre-implantation blastocoel fluid (BF) have attracted interest as accessible biomarkers indicative of embryonic health in ongoing IVF cycles. Therefore, we investigated expression levels of some aneuploidy-associated miRNAs and implantation-related mRNAs as predictive markers for embryo chromosomal normality. In this study, the BF of 25 blastocysts that had been checked for aneuploidy (aneuploid=17 and euploid=8) was aspirated and the expression of 10 miRNAs (miR-20a, miR-30c, miR‐661, miR-372, miR-142, miR-191, miR‐345, miR‐339, miR‐141, and miR-27b) and four genes (ERBB4, SELL, ITGB3, ITGAV) were evaluated using real time-PCR. Results showed that the levels of miR-661 and miR-20a were significantly higher in the BF of the aneuploid embryos compared to the euploid group (p = 0.0017 and 0.004, respectively). A comparison of the mRNA levels between the aneuploid and euploid groups also demonstrated a significant difference in ITGAV (p = 0.013) and SELL (p = 0.0317) levels. In the euploid group, a negative correlation was found between ITGB3 and miR-30c (r = ?0.71, p = 0.08), and in the aneuploid group, a positive correlation was found between ERBB4 and miR-345 (r = 0.71, p = 0.02). It can be suggested that miR-20a, miR-661, and ITGAV levels of BF could be used as less-invasive biomarkers to evaluate embryonic health. Moreover, aneuploidy-related miRNA levels were associated with levels of genes involved in embryo implantation.  相似文献   

7.
Preterm birth is attributed to neonatal morbidity as well as cognitive and physiological challenges. We have previously identified significant differences in mRNA expression in whole blood and monocytes, as well as differences in miRNA concentration in blood plasma, extracellular vesicles (EV) and EV‐depleted plasma in women undergoing spontaneous preterm labour (sPTL). The goal of this analysis was to identify differences in miRNA expression within whole blood (WB) and peripheral monocytes (PM) from the same population of women undergoing sPTL compared with non‐labouring controls matched by gestational age. We performed single‐end small RNA sequencing in whole blood and peripheral monocytes from women undergoing sPTL with active contractions (24‐34 weeks of gestation, N = 15) matched for gestational age to healthy pregnant non‐labouring controls (>37 weeks gestation, N = 30) who later delivered at term as a part of the Ontario Birth Study (Toronto, Ontario CA). We identified significant differences in expression of 16 miRNAs in PMs and nine miRNAs in WB in women undergoing sPTL. In PMs, these miRNAs were predicted targets of 541 genes, including 28 previously associated with sPTL. In WB, miRNAs were predicted to target 303 genes, including nine previously associated with sPTL. These genes were involved in a variety of immune pathways, including interleukin‐2 signalling. This study is the first to identify changes in miRNA expression in WB and PMs of women undergoing sPTL. Our results shed light on potential mechanisms by which miRNAs may play a role in mediating systemic inflammatory response in pregnant women that deliver prematurely.  相似文献   

8.
9.

Background

Rapidly growing evidence suggests that microRNAs (miRNAs) are involved in a wide range of cancer malignant behaviours including radioresistance. Therefore, the present study was designed to investigate miRNA expression patterns associated with radioresistance in NPC.

Methods

The differential expression profiles of miRNAs and mRNAs associated with NPC radioresistance were constructed. The predicted target mRNAs of miRNAs and their enriched signaling pathways were analyzed via biological informatical algorithms. Finally, partial miRNAs and pathways-correlated target mRNAs were validated in two NPC radioreisitant cell models.

Results

50 known and 9 novel miRNAs with significant difference were identified, and their target mRNAs were narrowed down to 53 nasopharyngeal-/NPC-specific mRNAs. Subsequent KEGG analyses demonstrated that the 53 mRNAs were enriched in 37 signaling pathways. Further qRT-PCR assays confirmed 3 down-regulated miRNAs (miR-324-3p, miR-93-3p and miR-4501), 3 up-regulated miRNAs (miR-371a-5p, miR-34c-5p and miR-1323) and 2 novel miRNAs. Additionally, corresponding alterations of pathways-correlated target mRNAs were observed including 5 up-regulated mRNAs (ICAM1, WNT2B, MYC, HLA-F and TGF-β1) and 3 down-regulated mRNAs (CDH1, PTENP1 and HSP90AA1).

Conclusions

Our study provides an overview of miRNA expression profile and the interactions between miRNA and their target mRNAs, which will deepen our understanding of the important roles of miRNAs in NPC radioresistance.  相似文献   

10.
11.
Eukaryotic mRNA metabolism regulates its stability, localization, and translation using complementarity with counter-part RNAs. To modulate their stability, small and long noncoding RNAs can establish complementarity with their target mRNAs. Although complementarity of small interfering RNAs and microRNAs with target mRNAs has been studied thoroughly, partial complementarity of long noncoding RNAs (lncRNAs) with their target mRNAs has not been investigated clearly. To address that research gap, our lab investigated whether the sequence complementarity of two lncRNAs, lincRNA-p21 and OIP5-AS1, influenced the quantity of target RNA expression. We predicted a positive correlation between lncRNA complementarity and target mRNA quantity. We confirmed this prediction using RNA affinity pull down, microarray, and RNA-sequencing analysis. In addition, we utilized the information from this analysis to compare the quantity of target mRNAs when two lncRNAs, lincRNA-p21 and OIP5-AS1, are depleted by siRNAs. We observed that human and mouse lincRNA-p21 regulated target mRNA abundance in complementarity-dependent and independent manners. In contrast, affinity pull down of OIP5-AS1 revealed that changes in OIP5-AS1 expression influenced the amount of some OIP5-AS1 target mRNAs and miRNAs, as we predicted from our sequence complementarity assay. Altogether, the current study demonstrates that partial complementarity of lncRNAs and mRNAs (even miRNAs) assist in determining target RNA expression and quantity.  相似文献   

12.

Aims

MicroRNAs (miRNAs) play important roles in the pathogenesis of cardiovascular diseases. Circulating miRNAs were recently identified as biomarkers for various physiological and pathological conditions. In this study, we aimed to identify the circulating miRNA fingerprint of vulnerable coronary artery disease (CAD) and explore its potential as a novel biomarker for this disease.

Methods and Results

The Taqman low-density miRNA array and coexpression network analyses were used to identify distinct miRNA expression profiles in the plasma of patients with typical unstable angina (UA) and angiographically documented CAD (UA group, n = 13) compared to individuals with non-cardiac chest pain (control group, n = 13). Significantly elevated expression levels of miR-106b/25 cluster, miR-17/92a cluster, miR-21/590-5p family, miR-126*, and miR-451 were observed in UA patients compared to controls. These findings were validated by real-time PCR in another 45 UA patients, 31 stable angina patients, and 37 controls. In addition, miR-106b, miR-25, miR-92a, miR-21, miR-590-5p, miR-126* and miR-451 were upregulated in microparticles (MPs) isolated from the plasma of UA patients (n = 5) compared to controls (n = 5). Using flow cytometry and immunolabeling, we further found that Annexin V+ MPs were increased in the plasma samples of UA patients compared to controls, and the majority of the increased MPs in plasma were shown to be Annexin V+ CD31+ MPs. The findings suggest that Annexin V+ CD31+ MPs may contribute to the elevated expression of the selected miRNAs in the circulation of patients with vulnerable CAD.

Conclusion

The circulating miRNA signature, consisting of the miR-106b/25 cluster, miR-17/92a cluster, miR-21/590-5p family, miR-126* and miR-451, may be used as a novel biomarker for vulnerable CAD.

Trial Registration

Chinese Clinical Trial Register, ChiCTR-OCH-12002349.  相似文献   

13.
BackgroundClinical studies have established aldosterone as a critical physiological and pathophysiological factor in salt and water homeostasis, blood pressure control and in heart failure. Genetic and physiological studies of mice are used to model these processes. A sensitive and specific assay for aldosterone is therefore needed to monitor adrenocortical activity in murine studies of renal function and cardiovascular diseases.MethodsAntibodies against aldosterone were raised in sheep as previously described. HRP-Donkey-anti-sheep IgG enzyme tracer was produced in our laboratory using the Lightning-Link HRP technique. Aldosterone ELISA protocol was validated and optimised to achieve the best sensitivity. The assay was validated by analysing the urine of mice collected under various experimental conditions designed to stimulate or suppress aldosterone in the presence of other potentially interfering steroid hormones.ResultsCross-reactivity with the steroids most likely to interfere was minimal: corticosterone = 0.0028%, cortisol = 0.0006%, DOC = 0.0048% except for 5α-dihydro-aldosterone = 1.65%. Minimum detection limit of this ELISA was 5.2 pmole/L (1.5 pg/mL). The validity of urinary aldosterone ELISA was confirmed by the excellent correlation between results obtained before and after solvent extraction and HPLC separation step (Y = 1.092X + 0.03, R2 = 0.995, n = 54). Accuracy studies, parallelism and imprecision data were determined and all found to be satisfactory. Using this assay, mean urinary aldosterone levels were (i) approximately 60-fold higher in females than males mice; (ii) increased 6-fold by dietary sodium restriction; (iii) increased 10-fold by ACTH infusion and (iv) reduced by >60% in Cyp11b1 null mice.ConclusionWe describe an ELISA for urinary aldosterone that is suitable for repeated non-invasive measurements in mice. Female aldosterone levels are higher than males. Unlike humans, most aldosterone in mouse urine is not conjugated. Increased levels were noted in response to dietary sodium restriction and ACTH treatment. The sensitivity of the assay is sufficient to detect suppressed levels in mouse models of congenital adrenal hyperplasia.  相似文献   

14.
The present study was conducted to identify the major seminal plasma protein profile of boars and its associations with semen criteria. Semen samples were collected from 12 adult boars and subjected to evaluation of sperm parameters (motility, morphology, vitality, and percent of cells with intact acrosome). Seminal plasma was obtained by centrifugation, analyzed by two-dimensional SDS-PAGE, and proteins identified by mass spectrometry (electrospray ionization quadrupole time-of-flight). We tested regression models using spot intensities related to the same proteins as independent variables and semen parameters as dependent variables (P ≤ 0.05). One hundred twelve spots were identified in the boar seminal plasma gels, equivalent to 39 different proteins. Spermadhesin porcine seminal protein (PSP)-I and PSP-II, as well as spermadhesins AQN-1, AQN-3 and AWN-1 represented 45.2 ± 8% of the total intensity of all spots. Other proteins expressed in the boar seminal plasma included albumin, complement proteins (complement factor H precursor, complement C3 precursor and adipsin/complement factor D), immunoglobulins (IgG heavy chain precursor, IgG delta heavy chain membrane bound form, IgG gamma-chain, Ig lambda chain V-C region PLC3, and CH4 and secreted domains of swine IgM), IgG-binding proteins, epididymal-specific lipocalin 5, epididymal secretory protein E1 precursor, epididymal secretory glutathione peroxidase precursor, transferrin, lactotransferrin and fibronectin type 1 (FN1). On the basis of the regression analysis, the percentage of sperm with midpiece defects was related to the amount of CH4 and secreted domains of swine IgM and FN1 (r² = 0.58, P = 0.006), IgG-binding protein (r² = 0.41, P = 0.024), complement factor H precursor (r² = 0.61, P = 0.014) and lactadherin (r² = 0.45, P = 0.033). The percentage of sperm with tail defects was also related to CH4 and secreted domains of swine IgM and FN1 (r² = 0.40, P = 0.034), IgG-binding protein (r² = 0.35, P = 0.043) and lactadherin (r² = 0.74, P = 0.001). Sperm motility, in turn, had association with the intensities of spots identified as lactadherin (r² = 0.48, P = 0.027). In conclusion, we presently describe the major proteome of boar seminal plasma and significant associations between specific seminal plasma proteins and semen parameters. Such relationships will serve as the basis for determination of molecular markers of sperm function in the swine species.  相似文献   

15.
16.
Micro‐RNAs regulate gene expression by directly binding to the target mRNAs. The goal of the study was to examine the expression profiling of miRNAs in human failing hearts and identify the key miRNAs that regulate molecular signalling networks and thus contribute to this pathological process. The levels of miRNAs and expressed genes were analysed in myocardial biopsy samples from patients with end‐stage heart failure (n = 14) and those from normal heart samples (n = 8). Four networks were built including the Gene regulatory network, Signal‐Network, miRNA‐GO‐Network and miRNA‐Gene‐Network. According to the fold change in the network and probability values in the microarray cohort, RT‐PCR was performed to measure the expression of five of the 72 differentially regulated miRNAs. miR‐340 achieved statistically significant. miR‐340 was identified for the first time in cardiac pathophysiological condition. We overexpressed miR‐340 in cultured neonatal rat cardiomyocytes to identify whether miR‐340 plays a determining role in the progression of heart failure. ANP, BNP and caspase‐3 were significantly elevated in the miR‐340 transfected cells compared with controls (P < 0.05). The cross‐sectional area of overexpressing miR‐340 cardiomyocytes (1952.22 ± 106.59) was greater (P < 0.0001) than controls (1059.99 ± 45.59) documented by Laser Confocal Microscopy. The changes of cellular structure and the volume were statistical significance. Our study provided a comprehensive miRNA expression profiling in the end‐stage heart failure and identified miR‐340 as a key miRNA contributing to the occurrence and progression of heart failure. Our discoveries provide novel therapeutic targets for patients with heart failure.  相似文献   

17.
MicroRNAs (miRNAs) are a class of highly conserved small non-coding RNA molecules that play a pivotal role in several cellular functions. In this study, miRNA and messenger RNA (mRNA) profiles were examined by Illumina microarray in mouse embryonic stem cells (ESCs) derived from parthenogenetic, androgenetic, and fertilized blastocysts. The global analysis of miRNA-mRNA target pairs provided insight into the role of miRNAs in gene expression. Results showed that a total of 125 miRNAs and 2394 mRNAs were differentially expressed between androgenetic ESCs (aESCs) and fertilized ESCs (fESCs), a total of 42 miRNAs and 87 mRNAs were differentially expressed between parthenogenetic ESCs (pESCs) and fESCs, and a total of 99 miRNAs and 1788 mRNAs were differentially expressed between aESCs and pESCs. In addition, a total of 575, 5 and 376 miRNA-mRNA target pairs were observed in aESCs vs. fESCs, pESCs vs. fESCs, and aESCs vs. pESCs, respectively. Furthermore, 15 known imprinted genes and 16 putative uniparentally expressed miRNAs with high expression levels were confirmed by both microarray and real-time RT-PCR. Finally, transfection of miRNA inhibitors was performed to validate the regulatory relationship between putative maternally expressed miRNAs and target mRNAs. Inhibition of miR-880 increased the expression of Peg3, Dyrk1b, and Prrg2 mRNA, inhibition of miR-363 increased the expression of Nfat5 and Soat1 mRNA, and inhibition of miR-883b-5p increased Nfat5, Tacstd2, and Ppapdc1 mRNA. These results warrant a functional study to fully understand the underlying regulation of genomic imprinting in early embryo development.  相似文献   

18.
19.
The long-chain n-3 polyunsaturated fatty acids (LC-PUFAs) eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) in fish oil have immunomodulatory properties. B cells are a poorly studied target of EPA/DHA in humans. Therefore, in this pilot study, we tested how n-3 LC-PUFAs influence B-cell responses of obese humans. Obese men and women were assigned to consume four 1-g capsules per day of olive oil (OO, n=12), fish oil (FO, n=12) concentrate or high-DHA-FO concentrate (n=10) for 12 weeks in a parallel design. Relative to baseline, FO (n=9) lowered the percentage of circulating memory and plasma B cells, whereas the other supplements had no effect. There were no postintervention differences between the three supplements. Next, ex vivo B-cell cytokines were assayed after stimulation of Toll-like receptors (TLRs) and/or the B-cell receptor (BCR) to determine if the effects of n-3 LC-PUFAs were pathway-dependent. B-cell IL-10 and TNFα secretion was respectively increased with high DHA-FO (n=10), relative to baseline, with respective TLR9 and TLR9 + BCR stimulation. OO (n=12) and FO (n=12) had no influence on B-cell cytokines compared to baseline, and there were no differences in postintervention cytokine levels between treatment groups. Finally, ex vivo antibody levels were assayed with FO (n=7) after TLR9 + BCR stimulation. Compared to baseline, FO lowered IgM but not IgG levels accompanied by select modifications to the plasma lipidome. Altogether, the results suggest that n-3 LC-PUFAs could modulate B-cell activity in humans, which will require further testing in a larger cohort.  相似文献   

20.
The pathogenesis of sickle cell disease (HbSS), which has numerous complications including stroke, involves inflammation resulting in alteration of plasma inflammatory protein concentration. We investigated HbSS children with abnormal cerebral blood flow detected by trans-cranial Doppler ultrasound (TCD) who participated in the multi-center stroke prevention (STOP) study, to determine if plasma inflammatory protein concentration is associated with the outcome of stroke. Thirty-nine plasma samples from HbSS participants with elevated TCD who had no stroke, HbSS-NS (n = 13) or had stroke, HbSS-S (n = 13), HbSS steady-state controls (n = 7) and controls with normal hemoglobin, HbAA (n = 6), were analyzed simultaneously for 27 circulating inflammatory proteins. Logistic regression and receiver operating characteristics curve analysis of stroke on plasma inflammatory mediator concentration, adjusted for age and gender, demonstrated that interleukin-1β (IL-1β) was protective against stroke development (HbSS-NS = 19, 17–23, HbSS-S = 17, 16–19 pg/mL, median and 25th–75th percentile; odds ratio = 0.59, C.I. = 0.36–0.96) and was a good predictor of stroke (area under curve = 0.852). This result demonstrates a strong association of systemic inflammation with stroke development in HbSS via moderately increased plasma IL-1β concentration, which is furthermore associated with a decreased likelihood of stroke in HbSS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号