首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Waterfowls, such as ducks, are natural hosts of avian influenza virus (AIV) and can genetically limit the pathogenicity. On the other hand, some AIV strains cause severe pathogenicity in chickens. It is suggested that differences in the pathogenicity of AIV infection between waterfowls and chickens are related to the expression of retinoic acid-inducible gene I (RIG-I), a pattern recognition receptor that chickens evolutionally lack. Here, we knocked-in the duck RIG-I bearing the T2A peptide sequence at the 3′ region of the Mx, an interferon-stimulated gene (ISG), in chicken embryo fibroblast cells (DF-1) using the precise integration into target chromosome (PITCh) system to control the duck RIG-I expression in chickens. The expression patterns of the duck RIG-I were then analyzed using qPCR. The knocked-in DF-1 cells expressed RIG-I via the stimulation of IFN-β and poly(I:C) in a dose-dependent manner. Moreover, poly(I:C) stimulation in the knocked-in DF-1 cells upregulated RIG-I-like receptor (RLR) family signaling pathway-related genes IFN-β, OASL, and IRF7. The IFN-β-dependent expression of RIG-I and upregulation of IFN-β in the poly(I:C) stimulation demonstrated a positive-feedback loop via RIG-I, usually evident in ducks. Overall, this novel strategy established RIG-I-dependent immune response in chickens without overexpression of RIG-I and disruption of the host genes.  相似文献   

2.
Ceramides (CERs) are key intermediate sphingolipids implicated in contributing to mitochondrial dysfunction and the development of multiple metabolic conditions. Despite the growing evidence of CER role in disease risk, kinetic methods to measure CER turnover are lacking, particularly using in vivo models. The utility of orally administered 13C3, 15N l-serine, dissolved in drinking water, was tested to quantify CER 18:1/16:0 synthesis in 10-week-old male and female C57Bl/6 mice. To generate isotopic labeling curves, animals consumed either a control diet or high-fat diet (HFD; n = 24/diet) for 2 weeks and varied in the duration of the consumption of serine-labeled water (0, 1, 2, 4, 7, or 12 days; n = 4 animals/day/diet). Unlabeled and labeled hepatic and mitochondrial CERs were quantified using liquid chromatography tandem MS. Total hepatic CER content did not differ between the two diet groups, whereas total mitochondrial CERs increased with HFD feeding (60%, P < 0.001). Within hepatic and mitochondrial pools, HFD induced greater saturated CER concentrations (P < 0.05) and significantly elevated absolute turnover of 16:0 mitochondrial CER (mitochondria: 59%, P < 0.001 vs. liver: 15%, P = 0.256). The data suggest cellular redistribution of CERs because of the HFD. These data demonstrate that a 2-week HFD alters the turnover and content of mitochondrial CERs. Given the growing data on CERs contributing to hepatic mitochondrial dysfunction and the progression of multiple metabolic diseases, this method may now be used to investigate how CER turnover is altered in these conditions.  相似文献   

3.
4.
Oral and gut Bacteroidetes produce unique classes of serine-glycine lipodipeptides and glycine aminolipids that signal through host Toll-like receptor 2. These glycine lipids have also been detected in human arteries, but their effects on atherosclerosis are unknown. Here, we sought to investigate the bioactivity of bacterial glycine lipids in mouse models of atherosclerosis. Lipid 654 (L654), a serine-glycine lipodipeptide species, was first tested in a high-fat diet (HFD)-fed Ldlr?/? model of atherosclerosis. Intraperitoneal administration of L654 over 7 weeks to HFD-fed Ldlr?/? mice resulted in hypocholesterolemic effects and significantly attenuated the progression of atherosclerosis. We found that L654 also reduced liver inflammatory and extracellular matrix gene expression, which may be related to inhibition of macrophage activation as demonstrated in vivo by lower major histocompatibility complex class II gene expression and confirmed in cell experiments. In addition, L654 and other bacterial glycine lipids in feces, liver, and serum were markedly reduced alongside changes in Bacteroidetes relative abundance in HFD-fed mice. Finally, we tested the bioactivities of L654 and related lipid 567 in chow-fed Apoe?/? mice, which displayed much higher fecal glycine lipids relative to HFD-fed Ldlr?/? mice. Administration of L654 or lipid 567 for 7 weeks to these mice reduced the liver injury marker alanine aminotransferase, but other effects seen in Ldlr?/? were not observed. Therefore, we conclude that conditions in which gut microbiome-derived glycine lipids are lost, such as HFD, may exacerbate the development of atherosclerosis and liver injury, whereas correction of such depletion may protect from these disorders.  相似文献   

5.
Alpha/beta hydrolase domain-containing protein 4 (ABHD4) catalyzes the deacylation of N-acyl phosphatidyl-ethanolamine (NAPE) and lyso-NAPE to produce glycerophospho-N-acyl ethanolamine (GP-NAE). Through a variety of metabolic enzymes, NAPE, lyso-NAPE, and GP-NAE are ultimately converted into NAE, a group of bioactive lipids that control many physiological processes including inflammation, cognition, food intake, and lipolysis (i.e., oleoylethanolamide or OEA). In a diet-induced obese mouse model, adipose tissue Abhd4 gene expression positively correlated with adiposity. However, it is unknown whether Abhd4 is a causal or a reactive gene to obesity. To fill this knowledge gap, we generated an Abhd4 knockout (KO) 3T3-L1 pre-adipocyte. During adipogenic stimulation, Abhd4 KO pre-adipocytes had increased adipogenesis and lipid accumulation, suggesting Abhd4 is responding to (a reactive gene), not contributing to (not a causal gene), adiposity, and may serve as a mechanism for protecting against obesity. However, we did not observe any differences in adiposity and metabolic outcomes between whole-body Abhd4 KO or adipocyte-specific Abhd4 KO mice and their littermate control mice (both male and female) on chow or a high-fat diet. This might be because we found that deletion of Abhd4 did not affect NAE such as OEA production, even though Abhd4 was highly expressed in adipose tissue and correlated with fasting adipose OEA levels and lipolysis. These data suggest that ABHD4 regulates adipocyte differentiation in vitro but does not affect adipose tissue lipid metabolism in mice despite nutrient overload, possibly due to compensation from other NAPE and NAE metabolic enzymes.  相似文献   

6.
CYP7B1 catalyzes mitochondria-derived cholesterol metabolites such as (25R)26-hydroxycholesterol (26HC) and 3β-hydroxy-5-cholesten-(25R)26-oic acid (3βHCA) and facilitates their conversion to bile acids. Disruption of 26HC/3βHCA metabolism in the absence of CYP7B1 leads to neonatal liver failure. Disrupted 26HC/3βHCA metabolism with reduced hepatic CYP7B1 expression is also found in nonalcoholic steatohepatitis (NASH). The current study aimed to understand the regulatory mechanism of mitochondrial cholesterol metabolites and their contribution to onset of NASH. We used Cyp7b1−/− mice fed a normal diet (ND), Western diet (WD), or high-cholesterol diet (HCD). Serum and liver cholesterol metabolites as well as hepatic gene expressions were comprehensively analyzed. Interestingly, 26HC/3βHCA levels were maintained at basal levels in ND-fed Cyp7b1−/− mice livers by the reduced cholesterol transport to mitochondria, and the upregulated glucuronidation and sulfation. However, WD-fed Cyp7b1−/− mice developed insulin resistance (IR) with subsequent 26HC/3βHCA accumulation due to overwhelmed glucuronidation/sulfation with facilitated mitochondrial cholesterol transport. Meanwhile, Cyp7b1−/− mice fed an HCD did not develop IR or subsequent evidence of liver toxicity. HCD-fed mice livers revealed marked cholesterol accumulation but no 26HC/3βHCA accumulation. The results suggest 26HC/3βHCA-induced cytotoxicity occurs when increased cholesterol transport into mitochondria is coupled to decreased 26HC/3βHCA metabolism driven with IR. Supportive evidence for cholesterol metabolite-driven hepatotoxicity is provided in a diet-induced nonalcoholic fatty liver mouse model and by human specimen analyses. This study uncovers an insulin-mediated regulatory pathway that drives the formation and accumulation of toxic cholesterol metabolites within the hepatocyte mitochondria, mechanistically connecting IR to cholesterol metabolite-induced hepatocyte toxicity which drives nonalcoholic fatty liver disease.  相似文献   

7.
《Genomics》2022,114(4):110400
Endive (Cichorium endivia L.) is a leafy vegetable in the Asteraceae family. Sesquiterpene lactones (STLs) in endive leaves bring a bitter taste that varies between varieties. Despite their importance in breeding varieties with unique flavours, sesquiterpenoid biosynthesis pathways in endive are poorly understood. We assembled a chromosome-scale endive genome of 641 Mb with a contig N50 of 5.16 Mb and annotated 46,711 protein-coding genes. Several gene families, especially terpene synthases (TPS) genes, expanded significantly in the C. endivia genome. STLs biosynthesis-related genes and TPS genes in more bitter varieties have shown a higher level of expression, which could be attributed to genomic variations. Our results penetrate the origin and diversity of bitter taste and facilitate the molecular breeding of endive varieties with unique bitter tastes. The high-quality endive assembly would provide a reference genome for studying the evolution and diversity of Asteraceae.  相似文献   

8.
Two Gram-stain-negative, strictly aerobic, moderately halophilic, non-spore-forming and rod-shaped bacteria, designated M5N1S17T and M5N1S15, were isolated from saline soil in Baotou, China. A phylogenetic analysis based on 16S rRNA gene sequences showed that the two strains clustered closely with Halomonas montanilacus PYC7WT and shared 99.1 and 99.3% sequence similarities, respectively. The average nucleotide identity based on BLAST (ANIb) and MUMmer (ANIm) values of the two strains with each other were 95.5% and 96.7%, respectively, while the ANIb and ANIm values between the two strains and 15 closer Halomonas species were 74.8–91.3% and 84.1–92.6%, respectively. The major polar lipids of M5N1S17T are diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, and an unidentified phospholipid. The major polar lipids of M5N1S15 are diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, two unidentified phospholipids, and an unidentified lipid. The predominant ubiquinone in the two strains is Q-9. The major fatty acids of the two strains are C18:1 ω6c and/or C18:1 ω7c, C16:0, and C16:1 ω7c and/or C16:1 ω6c. Based on phylogenetic, phenotypic, and physiological results, strains M5N1S17T and M5N1S15 should be identified as a novel species of the genus Halomonas, for which Halomonas alkalisoli sp. nov. is proposed. The type strain is M5N1S17T (= CGMCC 1.19023T = KCTC 92130T). The phylogenetic trees showed that Halomonas daqingensis CGMCC 1.6443T clustered tightly with Halomonas desiderata FB2T, and the two strains shared >98.0% of ANI values with each other. Therefore, we propose the reclassification of H. daqingensis Wu et al. 2008 as a later heterotypic synonym of H. desiderata Berendes et al. 1996.  相似文献   

9.
Bile acids (BAs) are steroid detergents in bile that contribute to fat absorption, cell signaling, and microbiome interactions. The final step in their synthesis is amino acid conjugation with either glycine or taurine in the liver by the enzyme bile acid-CoA:amino acid N-acyltransferase (BAAT). Here, we describe the microbial, chemical, and physiological consequences of Baat gene knockout. Baat-/- mice were underweight after weaning but quickly exhibited catch-up growth. At three weeks of age, KO animals had increased phospholipid excretion and decreased subcutaneous fat pad mass, liver mass, glycogen staining in hepatocytes, and hepatic vitamin A stores, but these were less marked in adulthood. Additionally, KO mice had an altered microbiome in early life. Their BA pool was highly enriched in cholic acid but not completely devoid of conjugated BAs. KO animals had 27-fold lower taurine-conjugated BAs than wild type in their liver but similar concentrations of glycine-conjugated BAs and higher microbially conjugated BAs. Furthermore, the BA pool in Baat-/- was enriched in a variety of unusual BAs that were putatively sourced from cysteamine conjugation with subsequent oxidation and methylation of the sulfur group mimicking taurine. Antibiotic treatment of KO mice indicated the microbiome was not the likely source of the unusual conjugations, instead, the unique BAs in KO animals were likely derived from the peroxisomal acyltransferases Acnat1 and Acnat2, which are duplications of Baat in the mouse genome that are inactivated in humans. This study demonstrates that BA conjugation is important for early life development of mice.  相似文献   

10.
The main fatty acids at the sn-1 position of phospholipids (PLs) are saturated or monounsaturated fatty acids such as palmitic acid (C16:0), stearic acid (C18:0), and oleic acid (C18:1) and are constantly replaced, like unsaturated fatty acids at the sn-2 position. However, little is known about the molecular mechanism underlying the replacement of fatty acids at the sn-1 position, i.e., the sn-1 remodeling. Previously, we established a method to evaluate the incorporation of fatty acids into the sn-1 position of lysophospholipids (lyso-PLs). Here, we used this method to identify the enzymes capable of incorporating fatty acids into the sn-1 position of lyso-PLs (sn-1 lysophospholipid acyltransferase [LPLAT]). Screenings using siRNA knockdown and recombinant proteins for 14 LPLATs identified LPLAT7/lysophosphatidylglycerol acyltransferase 1 (LPGAT1) as a candidate. In vitro, we found LPLAT7 mainly incorporated several fatty acids into the sn-1 position of lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), with weak activities toward other lyso-PLs. Interestingly, however, only C18:0-containing phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were specifically reduced in the LPLAT7-mutant cells and tissues from knockout mice, with a concomitant increase in the level of C16:0- and C18:1-containing PC and PE. Consistent with this, the incorporation of deuterium-labeled C18:0 into PLs dramatically decreased in the mutant cells, while deuterium-labeled C16:0 and C18:1 showed the opposite dynamic. Identifying LPLAT7 as an sn-1 LPLAT facilitates understanding the biological significance of sn-1 fatty acid remodeling of PLs. We also propose to use the new nomenclature, LPLAT7, for LPGAT1 since the newly assigned enzymatic activities are quite different from the LPGAT1s previously reported.  相似文献   

11.
The composition of the core lipids and intact polar lipids (IPLs) of five Rubrobacter species was examined. Methylated (ω-4) fatty acids (FAs) characterized the core lipids of Rubrobacter radiotolerans, R. xylanophilus and R. bracarensis. In contrast, R. calidifluminis and R. naiadicus lacked ω-4 methyl FAs but instead contained abundant (i.e., 34–41 % of the core lipids) ω-cyclohexyl FAs not reported before in the order Rubrobacterales. Their genomes contained an almost complete operon encoding proteins enabling production of cyclohexane carboxylic acid CoA thioester, which acts as a building block for ω-cyclohexyl FAs in other bacteria. Hence, the most plausible explanation for the biosynthesis of these cyclic FAs in R. calidifluminis and R. naiadicus is a recent acquisition of this operon. All strains contained 1-O-alkyl glycerol ether lipids in abundance (up to 46 % of the core lipids), in line with the dominance (>90 %) of mixed ether/ester IPLs with a variety of polar headgroups. The IPL head group distribution of R. calidifluminis and R. naiadicus differed, e.g. they lacked a novel IPL tentatively assigned as phosphothreoninol. The genomes of all five Rubrobacter species contained a putative operon encoding the synthesis of the 1-O-alkyl glycerol phosphate, the presumed building block of mixed ether/ester IPLs, which shows some resemblance with an operon enabling ether lipid production in various other aerobic bacteria but requires more study. The uncommon dominance of mixed ether/ester IPLs in Rubrobacter species exemplifies our recent growing awareness that the lipid divide between archaea and bacteria/eukaryotes is not as clear cut as previously thought.  相似文献   

12.
Bacteria within the phylum Planctomycetota are biologically relevant due to unique characteristics among prokaryotes. Members of the genus Rhodopirellula can be abundant in marine habitats, however, only six species are currently validly described. In this study, we expand the explored genus diversity by formally describing a novel species. The pink-coloured strain ICT_H3.1T was isolated from brackish sediments collected in the Tagus estuary (Portugal) and a 16S rRNA gene sequence-based analysis placed this strain into the genus Rhodopirellula (family Pirellulaceae). The closest type strain is Rhodopirellula rubra LF2T, suggested by a similarity of 98.4% of the 16S rRNA gene sequence. Strain ICT_H3.1T is heterotrophic, aerobic and able to grow under microaerobic conditions. The strain grows between 15 and 37 °C, over a range of pH 6.5 to 11.0 and from 1 to 8% (w/v) NaCl. Several nitrogen and carbon sources were utilized by the novel isolate. Cells have an elongated pear-shape with 2.0 ± 0.3 × 0.9 ± 0.2 µm in size. Cells of strain ICT_H3.1T cluster in rosettes through a holdfast structure and divide by budding. Younger cells are motile. Ultrathin cell sections show cytoplasmic membrane invaginations and polar fimbriae. The genome size is 9,072,081 base pairs with a DNA G + C content of 56.1 mol%. Genomic, physiological and morphological comparison of strain ICT_H3.1T with its relatives suggest that it belongs to a novel species within the genus Rhodopirellula. Hence, we propose the name Rhodopirellula aestuarii sp. nov., represented by ICT_H3.1T (=CECT30431T = LMG32464T) as the type strain of this novel species.16S rRNA gene accession number: GenBank = OK001858.Genome accession number: The Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession JAMQBK000000000. The version described in this paper is version JAMQBK010000000.  相似文献   

13.
The NOD-like receptor pyrin domain 3 (NLRP3) inflammasome is activated during atherogenesis, but how this occurs is unclear. Here, we explored the mechanisms activating and regulating NLRP3 inflammasomes via the acid sphingomyelinase (ASM)-ceramide signaling pathway. As a neointima formation model, partial left carotid ligations were performed on endothelial cell (EC)-specific ASM transgene mice (Smpd1trg/ECcre) and their control littermates (Smpd1trg/WT and WT/WT) fed on the Western diet (WD). We found neointima formation remarkably increased in Smpd1trg/ECcre mice over their control littermates. Next, we observed enhanced colocalization of NLRP3 versus adaptor protein ASC (the adaptor molecule apoptosis-associated speck-like protein containing a CARD) or caspase-1 in the carotid ECs of WD-treated Smpd1trg/ECcre mice but not in their control littermates. In addition, we used membrane raft (MR) marker flotillin-1 and found more aggregation of ASM and ceramide in the intima of Smpd1trg/ECcre mice than their control littermates. Moreover, we demonstrated by in situ dihydroethidium staining, carotid intimal superoxide levels were much higher in WD-treated Smpd1trg/ECcre mice than in their control littermates. Using ECs from Smpd1trg/ECcre and WT/WT mice, we showed ASM overexpression markedly enhanced 7-ketocholesterol (7-Ket)-induced increases in NLRP3 inflammasome formation, accompanied by enhanced caspase-1 activity and elevated interleukin-1β levels. These 7-Ket-induced increases were significantly attenuated by ASM inhibitor amitriptyline. Furthermore, we determined that increased MR clustering with NADPH oxidase subunits to produce superoxide contributes to 7-Ket-induced NLRP3 inflammasome activation via a thioredoxin-interacting protein-mediated controlling mechanism. We conclude that ceramide from ASM plays a critical role in NLRP3 inflammasome activation during hypercholesterolemia via MR redox signaling platforms to produce superoxide, which leads to TXNIP dissociation.  相似文献   

14.
15.
16.
Mass-spectrometry-enabled ADP-ribosylation workflows are developing rapidly, providing researchers a variety of ADP-ribosylome enrichment strategies and mass spectrometric acquisition options. Despite the growth spurt in upstream technologies, systematic ADP-ribosyl (ADPr) peptide mass spectral annotation methods are lacking. HCD-dependent ADP-ribosylome studies are common, but the resulting MS2 spectra are complex, owing to a mixture of b/y-ions and the m/p-ion peaks representing one or more dissociation events of the ADPr moiety (m-ion) and peptide (p-ion). In particular, p-ions that dissociate further into one or more fragment ions can dominate HCD spectra but are not recognized by standard spectral annotation workflows. As a result, annotation strategies that are solely reliant upon the b/y-ions result in lower spectral scores that in turn reduce the number of reportable ADPr peptides. To improve the confidence of spectral assignments, we implemented an ADPr peptide annotation and scoring strategy. All MS2 spectra are scored for the ADPr m-ions, but once spectra are assigned as an ADPr peptide, they are further annotated and scored for the p-ions. We implemented this novel workflow to ADPr peptides enriched from the liver and spleen isolated from mice post 4 h exposure to systemic IFN-γ. HCD collision energy experiments were first performed on the Orbitrap Fusion Lumos and the Q Exactive, with notable ADPr peptide dissociation properties verified with CID (Lumos). The m-ion and p-ion series score distributions revealed that ADPr peptide dissociation properties vary markedly between instruments and within instrument collision energy settings, with consequences on ADPr peptide reporting and amino acid localization. Consequentially, we increased the number of reportable ADPr peptides by 25% (liver) and 17% (spleen) by validation and the inclusion of lower confidence ADPr peptide spectra. This systematic annotation strategy will streamline future reporting of ADPr peptides that have been sequenced using any HCD/CID-based method.  相似文献   

17.
Therapeutic reduction of hydrophobic bile acids exposure is considered beneficial in cholestasis. The Cyp2c70 KO mice lack hydrophilic muricholic acids and have a human-like hydrophobic bile acid pool resulting in hepatobiliary injury. This study investigates if combining an apical sodium-dependent bile acid transporter inhibitor GSK2330672 (GSK) and fibroblast growth factor-15 (FGF15) overexpression, via simultaneous inhibition of bile acid synthesis and gut bile acid uptake, achieves enhanced therapeutic efficacy in alleviating hepatobiliary injury in Cyp2c70 KO mice. The effects of GSK, adeno-associated virus (AAV)-FGF15, and the combined treatment on bile acid metabolism and cholangiopathy were compared in Cyp2c70 KO mice. In female Cyp2c70 KO mice with more severe cholangiopathy than male Cyp2c70 KO mice, the combined treatment was more effective in reversing portal inflammation, ductular reaction, and fibrosis than AAV-FGF15, while GSK was largely ineffective. The combined treatment reduced bile acid pool by ~80% compared to ~50% reduction by GSK or AAV-FGF15, and enriched tauro-conjugated ursodeoxycholic acid in the bile. Interestingly, the male Cyp2c70 KO mice treated with AAV-FGF15 or GSK showed attenuated cholangiopathy and portal fibrosis but the combined treatment was ineffective despite reducing bile acid pool. Both male and female Cyp2c70 KO mice showed impaired gut barrier integrity. AAV-FGF15 and the combined treatment, but not GSK, reduced gut exposure to lithocholic acid and improved gut barrier function. In conclusion, the combined treatment improved therapeutic efficacy against cholangiopathy than either single treatment in the female but not male Cyp2c70 KO mice by reducing bile acid pool size and hydrophobicity.  相似文献   

18.
《Endocrine practice》2021,27(4):326-333
ObjectiveThe saline suppression test (SST) and captopril challenge test (CCT) are commonly used confirmatory tests for primary aldosteronism (PA). Seated SST (SSST) has been reported to be superior to recumbent SST. Whether SSST is better than CCT remains unclear. We aimed to compare the diagnostic accuracy of SSST and CCT in a prospective study.MethodsHypertensive patients at a high risk of PA were consecutively included. Patients with an aldosterone-renin ratio of ≥1.0 ng/dL/μIU/mL were asked to complete SSST, CCT, and the fludrocortisone suppression test (FST). Using FST as a reference standard (plasma aldosterone concentration [PAC] post FST ≥ 6.0 ng/dL), area under the receiver-operating characteristic curve (AUC), sensitivity, and specificity of SSST and CCT were calculated, and multiple regression analyses were performed to identify potential factors leading to false diagnosis.ResultsA total of 196 patients diagnosed with PA and 73 with essential hypertension completed the study. Using PAC post SSST and PAC post CCT to confirm PA, SSST and CCT had comparable AUCs (AUCSSST 0.87 [95% CI 0.82-0.91] vs AUCCCT 0.88 [0.83-0.95], P = .646). When PAC post SSST and post CCT were set at 8.5 and 11 ng/dL, respectively, the sensitivity and specificity of SSST (0.72 [0.65, 0.78] and 0.86 [0.76, 0.93]) and CCT (0.73 [0.67, 0.80] and 0.85 [0.75, 0.92]) were not significantly different. In the multiple regression analyses, 1-SD increment of sodium intake resulted in a 40% lower risk of false diagnosis with SSST.ConclusionSSST and CCT have comparable diagnostic accuracy. Insufficient sodium intake decreases the diagnostic efficiency of SSST but not of CCT. Since CCT is simpler and cheaper, it is preferred over SSST.  相似文献   

19.
The strains designed PP-18T, JC-4 and JC-7 isolated from soils, were Gram-stain-positive rods, facultative anaerobe, endospore-forming bacteria. The strains produced l-lactic acid from glucose. They showed positive for catalase but negative for oxidase, nitrate reduction and arginine hydrolysis. Strains P-18T, JC-4 and JC-7 were closely related to Weizmannia coagulans LMG 6326T (97.27–97.64%) and W. acidiproducens KCTC 13078T (96.46–96.74%) based on 16S rRNA gene sequence similarity, respectively. They contained meso-diaminopimelic acid in cell wall peptidoglycan and had seven isoprene units (MK-7) as the predominant menaquinone. The major cellular fatty acids of strain PP-18T were iso-C15:0, anteiso-C17:0, iso-C16:0 and anteiso-C15:0. The ANIb and ANIm values among the genomes of strains PP-18T, JC-4 and JC-7 are above 99.4% while their ANIb and ANIm values among them and W. coagulans LMG 6326T and W. acidiproducens KCTC 13078T were ranged from 76.61 to 79.59%. These 3 strains showed the digital DNA-DNA hybridization (dDDH) values of 20.7–23.6% when compared with W. coagulans LMG 6326T and W. acidiproducens DSM 23148T. The DNA G + C contents of strains PP-18T, JC-4 and JC-7 were 45.82%, 45.86% and 45.86%, respectively. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphoglycolipids. The results of phenotypic and chemotaxonomic characteristics and whole-genome analysis indicated that the strains PP-18T, JC-4 and JC-7 should be represented as a novel species within the genus Weizmannia for which the name Weizmannia acidilactici sp. nov. is proposed. The type strain is PP-18T (=KCTC 33974T = NBRC 113028T = TISTR 2515T).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号