首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
RNA sequence elements involved in the regulation of pre-mRNA splicing have previously been identified in vertebrate genomes by computational methods. Here, we apply such approaches to predict splicing regulatory elements in Drosophila melanogaster and compare them with elements previously found in the human, mouse, and pufferfish genomes. We identified 99 putative exonic splicing enhancers (ESEs) and 231 putative intronic splicing enhancers (ISEs) enriched near weak 5' and 3' splice sites of constitutively spliced introns, distinguishing between those found near short and long introns. We found that a significant proportion (58%) of fly enhancer sequences were previously reported in at least one of the vertebrates. Furthermore, 20% of putative fly ESEs were previously identified as ESEs in human, mouse, and pufferfish; while only two fly ISEs, CTCTCT and TTATAA, were identified as ISEs in all three vertebrate species. Several putative enhancer sequences are similar to characterized binding-site motifs for Drosophila and mammalian splicing regulators. To provide additional evidence for the function of putative ISEs, we separately identified 298 intronic hexamers significantly enriched within sequences phylogenetically conserved among 15 insect species. We found that 73 putative ISEs were among those enriched in conserved regions of the D. melanogaster genome. The functions of nine enhancer sequences were verified in a heterologous splicing reporter, demonstrating that these sequences are sufficient to enhance splicing in vivo. Taken together, these data identify a set of predicted positive-acting splicing regulatory motifs in the Drosophila genome and reveal regulatory sequences that are present in distant metazoan genomes.  相似文献   

3.
4.
5.
The Hoxc8 early enhancer is a 200 bp region that controls the early phase of Hoxc8 expression during mouse embryonic development. This enhancer defines the domain of Hoxc8 expression in the neural tube and mesoderm of the posterior regions of the developing embryo. Five distinct cis-acting elements, A-E, were previously shown to govern early phase Hoxc8 expression. Significant divergence between mammalian and fish Hoxc8 early enhancer sequences and activities suggested additional cis-acting elements. Here we describe four additional cis-acting elements (F-I) within the 200 bp Hoxc8 early enhancer region identified by comparative regulatory analysis and transgene-mutation studies. These elements affect posterior neural tube and mesoderm expression of the reporter gene, either singly or in combination. Surprisingly, these new elements are missing from the zebrafish and Fugu Hoxc8 early enhancer sequences. Considering that fish enhancers direct robust reporter expression in transgenic mouse embryos, it is tempting to postulate that fish and mammalian Hoxc8 early enhancers utilize different sets of elements to direct Hoxc8 early expression. These observations reveal a remarkable plasticity in the Hoxc8 early enhancer, suggesting different modes of initiation and establishment of Hoxc8 expression in different species. We postulate that extensive restructuring and remodeling of Hox cis-regulatory regions occurring in different taxa lead to relatively different Hox expression patterns, which in turn may act as a driving force in generating diverse axial morphologies.  相似文献   

6.
Lineage-specific regulatory elements underlie adaptation of species and play a role in disease susceptibility. We compared functionally conserved and lineage-specific enhancers by cross-mapping 5042 human and 6564 mouse heart enhancers. Of these, 79 per cent are lineage-specific, lacking a functional orthologue. Heart enhancers tend to cluster and, commonly, there are multiple heart enhancers in a heart locus providing a regulatory stability to the locus. We observed little cross-clustering, however, between lineage-specific and functionally conserved heart enhancers suggesting regulatory function acquisition and development in loci previously lacking heart activity. We also identified 862 human-specific heart enhancers: 417 featuring sequence conservation with mouse (class II) and 445 with neither sequence nor function conservation (class III). Ninety-eight per cent of class III enhancers were deleted from the mouse genome, and we estimated a similar-sized enhancer gain in the human lineage. Human-specific enhancers display no detectable decrease in the negative selection pressure and are strongly associated with genes partaking in the heart regulatory programmes. The loss of a heart enhancer could be compensated by activity of a redundant heart enhancer; however, we observed redundancy in only 15 per cent of class II and III enhancer loci indicating a large-scale reprogramming of the heart regulatory programme in mammals.  相似文献   

7.
8.
9.
Hoxc8 early enhancer controls the initiation and establishment phase of Hoxc8 expression in the mouse. Comparative studies indicate the presence of Hoxc8 early enhancer sequences in different vertebrate clades including mammals, birds and fish. Previous studies have shown differences between teleost and mammalian Hoxc8 early enhancers with respect to sequence and organization of protein binding elements. This raises the question of when the Hoxc8 early enhancer arose and how it has become modified in different vertebrate lineages. Here, we describe Hoxc8 early enhancer from the Indonesian coelacanth, Latimeria menadoensis. Coelacanths are the only extant lobefinned fish whose genome is tractable to genome analysis. The Latimeria Hoxc8 early enhancer sequence more closely resembles that of the mouse than that of Fugu or zebrafish. When assayed for enhancer activity by reporter gene analysis in transgenic mouse embryos, Latimeria Hoxc8 early enhancer directs expression to the posterior neural tube and mesoderm similar to that of the mouse enhancer. These observations support a close relationship between coelacanths and tetrapods and place the origin of a common Hoxc8 early enhancer sequence within the sarcopterygian lineage. The divergence of teleost (actinopterygii) Hoxc8 early enhancer may reflect a case of relaxed selection or other forms of instability induced by genome duplication events.  相似文献   

10.
Many enhancers regulate their target genes via long-distance interactions. High-throughput experiments like ChIA-PET have been developed to map such largely cell-type-specific interactions between cis-regulatory elements genome-widely. In this study, we integrated multiple types of data in order to reveal the general hidden patterns embedded in the ChIA-PET data. We found characteristic distance features related to promoter–promoter, enhancer–enhancer and insulator–insulator interactions. Although a protein may have many binding sites along the genome, our hypothesis is that those sites that share certain open chromatin structure can accommodate relatively larger protein complex consisting of specific regulatory and ‘bridging’ factors, and may be more likely to form robust long-range deoxyribonucleic acid (DNA) loops. This hypothesis was validated in the estrogen receptor alpha (ERα) ChIA-PET data. An efficient classifier was built to predict ERα-associated long-range interactions solely from the related ChIP-seq data, hence linking distal ERα-dependent enhancers to their target genes. We further applied the classifier to generate additional novel interactions, which were undetected in the original ChIA-PET paper but were validated by other independent experiments. Our work provides a new insight into the long-range chromatin interactions through deeper and integrative ChIA-PET data analysis and demonstrates DNA looping predictability from ordinary ChIP-seq data.  相似文献   

11.
The Hoxa2 and Hoxb2 genes are members of paralogy group II and display segmental patterns of expression in the developing vertebrate hindbrain and cranial neural crest cells. Functional analyses have demonstrated that these genes play critical roles in regulating morphogenetic pathways that direct the regional identity and anteroposterior character of hindbrain rhombomeres and neural crest-derived structures. Transgenic regulatory studies have also begun to characterize enhancers and cis-elements for those mouse and chicken genes that direct restricted patterns of expression in the hindbrain and neural crest. In light of the conserved role of Hoxa2 in neural crest patterning in vertebrates and the similarities between paralogs, it is important to understand the extent to which common regulatory networks and elements have been preserved between species and between paralogs. To investigate this problem, we have cloned and sequenced the intergenic region between Hoxa2 and Hoxa3 in the chick HoxA complex and used it for making comparative analyses with the respective human, mouse, and horn shark regions. We have also used transgenic assays in mouse and chick embryos to test the functional activity of Hoxa2 enhancers in heterologous species. Our analysis reveals that three of the critical individual components of the Hoxa2 enhancer region from mouse necessary for hindbrain expression (Krox20, BoxA, and TCT motifs) have been partially conserved. However, their number and organization are highly varied for the same gene in different species and between paralogs within a species. Other essential mouse elements appear to have diverged or are absent in chick and shark. We find the mouse r3/r5 enhancer fails to work in chick embryos and the chick enhancer works poorly in mice. This implies that new motifs have been recruited or utilized to mediate restricted activity of the enhancer in other species. With respect to neural crest regulation, cis-components are embedded among the hindbrain control elements and are highly diverged between species. Hence, there has been no widespread conservation of sequence identity over the entire enhancer domain from shark to humans, despite the common function of these genes in head patterning. This provides insight into how apparently equivalent regulatory regions from the same gene in different species have evolved different components to potentiate their activity in combination with a selection of core components.  相似文献   

12.
13.
Dou J  Zhao X  Fu X  Jiao W  Wang N  Zhang L  Hu X  Wang S  Bao Z 《Biology direct》2012,7(1):17-9
ABSTRACT: BACKGROUND: Single nucleotide polymorphisms (SNPs) are the most abundant type of genetic variation in eukaryotic genomes and have recently become the marker of choice in a wide variety of ecological and evolutionary studies. The advent of next-generation sequencing (NGS) technologies has made it possible to efficiently genotype a large number of SNPs in the non-model organisms with no or limited genomic resources. Most NGS-based genotyping methods require a reference genome to perform accurate SNP calling. Little effort, however, has yet been devoted to developing or improving algorithms for accurate SNP calling in the absence of a reference genome. RESULTS: Here we describe an improved maximum likelihood (ML) algorithm called iML, which can achieve high genotyping accuracy for SNP calling in the non-model organisms without a reference genome. The iML algorithm incorporates the mixed Poisson/normal model to detect composite read clusters and can efficiently prevent incorrect SNP calls resulting from repetitive genomic regions. Through analysis of simulation and real sequencing datasets, we demonstrate that in comparison with ML or a threshold approach, iML can remarkably improve the accuracy of de novo SNP genotyping and is especially powerful for the reference-free genotyping in diploid genomes with high repeat contents. CONCLUSIONS: The iML algorithm can efficiently prevent incorrect SNP calls resulting from repetitive genomic regions, and thus outperforms the original ML algorithm by achieving much higher genotyping accuracy. Our algorithm is therefore very useful for accurate de novo SNP genotyping in the non-model organisms without a reference genome.  相似文献   

14.
15.
16.
17.
18.
Enhancers are important regulators of gene expression in eukaryotes. Enhancers function independently of their distance and orientation to the promoters of target genes. Thus, enhancers have been difficult to identify. Only a few enhancers, especially distant intergenic enhancers, have been identified in plants. We developed an enhancer prediction system based exclusively on the DNase I hypersensitive sites (DHSs) in the Arabidopsis thaliana genome. A set of 10,044 DHSs located in intergenic regions, which are away from any gene promoters, were predicted to be putative enhancers. We examined the functions of 14 predicted enhancers using the β-glucuronidase gene reporter. Ten of the 14 (71%) candidates were validated by the reporter assay. We also designed 10 constructs using intergenic sequences that are not associated with DHSs, and none of these constructs showed enhancer activities in reporter assays. In addition, the tissue specificity of the putative enhancers can be precisely predicted based on DNase I hypersensitivity data sets developed from different plant tissues. These results suggest that the open chromatin signature-based enhancer prediction system developed in Arabidopsis may serve as a universal system for enhancer identification in plants.  相似文献   

19.
Critical functional properties are embedded in the non-coding portion of the human genome. Recent successful studies have shown that variations in distant-acting gene enhancer sequences can contribute to disease. In fact, various disorders, such as thalassaemias, preaxial polydactyly or susceptibility to Hirschsprung’s disease, may be the result of rearrangements of enhancer elements. We have analyzed the distribution of enhancer loci in the genome and compared their localization to that of previously described copy-number variations (CNVs). These data suggest a negative selection of copy number variable enhancers. To identify CNVs covering enhancer elements, we have developed a simple and cost-effective test. Here we describe the gene selection, design strategy and experimental validation of a customized oligonucleotide Array-Based Comparative Genomic Hybridization (aCGH), designated Enhancer Chip. It has been designed to investigate CNVs, allowing the analysis of all the genome with a 300 Kb resolution and specific disease regions (telomeres, centromeres and selected disease loci) at a tenfold higher resolution. Moreover, this is the first aCGH able to test over 1,250 enhancers, in order to investigate their potential pathogenic role. Validation experiments have demonstrated that Enhancer Chip efficiently detects duplications and deletions covering enhancer loci, demonstrating that it is a powerful instrument to detect and characterize copy number variable enhancers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号