首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sisal (Agave sisalana Perrine ex Engelm; Asparagaceae) bole rot is a devastating disease caused by Aspergillus niger Tiegh, which contributes to the decline of this crop in Brazil. Currently, there are no control measures available, but biocontrol is being investigated as a promising management strategy. Five previously selected bacterial isolates were identified by 16S rRNA sequencing as Paenibacillus sp. 512, Brevibacterium sp. 90 and Bacillus sp. 105, BMH and INV, and tested for their capacity to control bole rot in vitro and in field experiments. Individual bacterial isolates and their combinations significantly inhibited mycelial growth and spore germination of A. niger. In two independent field experiments, the application of isolates 512, 105, 90, INV, and 127 + INV reduced disease incidence to levels varying from 44 to 75%. Although there was no synergistic effect in their combined use, these bacteria have potential to be used against bole rot disease in the field.  相似文献   

2.
Previous classification of Xanthomonas campestris has defined six pathovars (aberrans, armoraciae, barbareae, campestris, incanae, and raphani) that cause diseases on cruciferous plants. However, pathogenicity assays with a range of strains and different hosts identifies only three types of symptom: black rot, leaf spot and bacterial blight. These findings raise the question of the genetic relatedness between strains assigned to different pathovars or symptom phenotypes. Here we have addressed this issue by multilocus sequence analysis of 42 strains. The X. campestris species was polymorphic at the 8 loci analysed and had a high genetic diversity; 23 sequence types were identified of which 16 were unique. All strains that induce black rot (pathovars aberrans and campestris) were genetically close but split in two groups. Only three clonal complexes were found, all within pathovar campestris. The assignment of the genome-sequenced strain 756C to pathovar raphani suggested from disease symptoms was confirmed, although this group of strains was particularly polymorphic. Strains belonging to pathovars barbareae and incanae were closely related, but distinct from pathovar campestris. There is evidence of genetic exchanges of housekeeping genes within this species as deduced from a clear incongruence between individual gene phylogenies and from network structures from SplitsTree analysis. Overall this study showed that the high genetic diversity derived equally from recombination and point mutation accumulation. However, X. campestris remains a species with a clonal evolution driven by a differential adaptation to cruciferous hosts.  相似文献   

3.
Lethal bole rot disease of coconut in East Africa   总被引:1,自引:0,他引:1  
A lethal bole, rot disease of coconut, caused by Marasmiellus cocophilus Pegler, sp. nov., reaches epidemic proportions in several areas along the coasts of Kenya and Tanzania. The first symptoms noticed on palms 8 or more years old are a frond wilt and a crown rot, but these follow a primary bole rot. Highest mortality is among seedlings and young palms up to 8 years old. Where the disease occurs sporophores are sometimes common on exposed roots, dead seedlings and the soil surface where diseased palms have been dug out. The fungus appears to be a persistent colonizer of coconut debris in the soil. Mycelial cultures from infected bole tissues and from sporophores were highly pathogenic to seedlings, and slowly invaded older tissue. M. cocophilus reaches the inner bole tissues only through the roots, and wounding of roots of their aerenchymatous protuberances is important in infection. Seedlings may become infected through roots damaged during transplanting from nurseries to the field; movement of seedlings from affected areas is one certain method of dispersal. Suggested control measures are: (1) selection of seedlings in nurseries and subsequent transplanting should be as early as possible; (2) seedlings should be transplanted very carefully, and damaged roots pruned and disinfected; (3) seedlings should never be taken from affected areas; (4) periodic soil sterilization of nurseries; and (5) no cultivation should be done between palms, especially where disease is present.  相似文献   

4.
Hard fibers are tissues obtained by decorticating leaves of various monocots, including sisal and abaca. These fibers have traditionally been used in cordage applications (rope, burlap, etc.), but they are also pulped and used in the paper industry for making specialty papers including currency, tea bags, and other products requiring high tensile strength. We examined fiber properties of several genera of Agavaceae from the southwestern United States and northern Mexico to determine their potential for paper making. Leaf samples of species ofAgave, Dasylirion, Hesperaloe, Nolina, and Yucca were macerated and fiber cell length, width, and wall thickness were measured. Several species ofHesperaloe andYucca have fibers that are as long or longer (>3 mm) and narrower (<20 µ) than those of sisal. Species ofAgave, Dasylirion, and,Nolina have shorter fibers (mostly 1.5 mm). Species ofHesperaloe andYucca would appear to be most suitable for paper making.  相似文献   

5.
Conidia of domesticated yellow-green aspergilli from strains of Aspergillus oryzae (Ahlburg) Cohn and Aspergillus sojae Sakaguchi and Yamada ex Murakami, used in the preparation of koji inoculum, germinate approximately 3 h sooner than conidia produced by related wild species, Aspergillus flavus Link ex Fr. and Aspergillus parasiticus Speare. There was no consistent relationship between average conidium size and estimated 50% germination time. Germination trials were conducted on Czapek agar at 28°C. A hypothesis is offered that, in the propagation of koji inoculum, selection has favored those individuals capable of rapid conidium germination and germ tube extension, attributes that enable them to gain the available substrate during intraspecific competition.  相似文献   

6.
7.
Species in Plectosphaerella are well known as pathogens of several plant species causing fruit, root and collar rot and collapse. In an investigation of endophytic fungi associated with cucurbit plants in China, we isolated 77 strains belonging to the genus Plectosphaerella. To identify the isolated strains, we collected the type or reference strains of all currently accepted species in Plectosphaerella except P. oratosquillae and conducted a phylogenetic analysis. Phylogenetic analysis of the partial 28S rDNA sequences showed that all species in Plectosphaerella were located in one clade of Plectosphaerellaceae. Based on multi-locus phylogenetic analysis of the ITS, CaM, EF1, TUB and morphological characteristics, all species in Plectosphaerella were well separated. Three endophytic strains from stems of Cucurbita moschata, Citrullus lanatus and Cucumis melo from North China were assigned to a new species described as P. sinensis in this paper. The new species differs morphologically from other Plectosphaerella species by irregular chlamydospores, and the dimensions of phialides and conidia. The other endophytic strains from several cucurbit plants were identified as P. cucumerina.  相似文献   

8.
Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot for cruciferous vegetables worldwide, especially for the cole crops such as cabbage and cauliflower. Due to the lack of resistant cabbage cultivars, black rot has brought about considerable yield losses in recent years in China. Understanding of the pathogen features is a key step for disease prevention, however, the pathogen diversity, population structure, and virulence are largely unknown. In this study, we studied 50 Xcc strains including 39 Xcc isolates collected from cabbage in 20 regions across China, using multilocus sequence genotyping (MLST), repetitive DNA sequence-based PCR (rep-PCR), and pathogenicity tests. For MLST analysis, a total of 12 allelic profiles (AP) were generated, among which the largest AP was AP1 containing 32 strains. Further cluster analysis of rep-PCR divided all strains into 14 DNA groups, with the largest group DNA I comprising of 34 strains, most of which also belonged to AP1. Inoculation tests showed that the representative Xcc strains collected from diverse regions performed differential virulence against three brassica hosts compared with races 1 and 4. Interestingly, these results indicated that AP1/DNA I was not only the main pathotype in China, but also a novel group that differed from the previously reported type races in both genotype and virulence. To our knowledge, this is the first extensive genetic diversity survey for Xcc strains in China, which provides evidence for cabbage resistance breeding and opens the gate for further cabbage-Xcc interaction studies.  相似文献   

9.

Background

Ralstonia solanacearum is a vascular soil-borne plant pathogen with an unusually broad host range. This economically destructive and globally distributed bacterium has thousands of distinct lineages within a heterogeneous and taxonomically disputed species complex. Some lineages include highly host-adapted strains (ecotypes), such as the banana Moko disease-causing strains, the cold-tolerant potato brown rot strains (also known as R3bv2) and the recently emerged Not Pathogenic to Banana (NPB) strains.

Results

These distinct ecotypes offer a robust model to study host adaptation and the emergence of ecotypes because the polyphyletic Moko strains include lineages that are phylogenetically close to the monophyletic brown rot and NPB strains. Draft genomes of eight new strains belonging to these three model ecotypes were produced to complement the eleven publicly available R. solanacearum genomes. Using a suite of bioinformatics methods, we searched for genetic and evolutionary features that distinguish ecotypes and propose specific hypotheses concerning mechanisms of host adaptation in the R. solanacearum species complex. Genome-wide, few differences were identified, but gene loss events, non-synonymous polymorphisms, and horizontal gene transfer were identified among type III effectors and were associated with host range differences.

Conclusions

This extensive comparative genomics analysis uncovered relatively few divergent features among closely related strains with contrasting biological characteristics; however, several virulence factors were associated with the emergence of Moko, NPB and brown rot and could explain host adaptation.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1474-8) contains supplementary material, which is available to authorized users.  相似文献   

10.
Wood-decaying basidiomycetes are some of the most effective bioconverters of lignocellulose in nature, however the way they alter wood crystalline cellulose on a molecular level is still not well understood. To address this, we examined and compared changes in wood undergoing decay by two species of brown rot fungi, Gloeophyllum trabeum and Meruliporia incrassata, and two species of white rot fungi, Irpex lacteus and Pycnoporus sanguineus, using X-ray diffraction (XRD) and 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. The overall percent crystallinity in wood undergoing decay by M. incrassata, G. trabeum, and I. lacteus appeared to decrease according to the stage of decay, while in wood decayed by P. sanguineus the crystallinity was found to increase during some stages of degradation. This result is suggested to be potentially due to the different decay strategies employed by these fungi. The average spacing between the 200 cellulose crystal planes was significantly decreased in wood degraded by brown rot, whereas changes observed in wood degraded by the two white rot fungi examined varied according to the selectivity for lignin. The conclusions were supported by a quantitative analysis of the structural components in the wood before and during decay confirming the distinct differences observed for brown and white rot fungi. The results from this study were consistent with differences in degradation methods previously reported among fungal species, specifically more non-enzymatic degradation in brown rot versus more enzymatic degradation in white rot.  相似文献   

11.
Mucorales and Aspergillus are molds responsible for infections in immunocompromised patients. In this report, we describe a case of a rare extensively mixed cutaneous infection caused by Lichtheimia ramosa, Aspergillus fumigatus and Aspergillus terreus in a neutropenic patient suffering from an acute leukemia. The fatal outcome of this patient can be attributed to its hematologic malignancy, the extensive nature of the lesions and the resistance of the strains to antifungals.  相似文献   

12.
Brown rot caused by Monilinia spp. is among the most important postharvest diseases of commercially grown stone fruits, and application of antagonistic yeasts to control brown rot is one promising strategy alternative to chemical fungicides. In this research, new yeast strains were isolated and tested for their activity against peach brown rot caused by Monilinia fructicola. Three yeast strains were originally isolated from the surface of plums (cv Chinese Angelino) collected in the north of China. In artificially wounded inoculation tests, the yeast reduced the brown rot incidence to 20 %. The population of the yeast within inoculated wounds on peaches significantly increased at 25 °C from an initial level of 5.0 × 106 to 4.45 × 107 CFU per wound after 1 day. The antagonistic strains were belonging to a new species of the genus Candida by sequence comparisons of 26 S rDNA D1/D2 domain and internal transcribed spacer region. The strains are most closely related to C. asparagi, C. musae and C. fructus on the basis of the phylogenetic trees based on the D1/D2 region of 26S rDNA. However, the strains are notably different from C. asparagi, C. musae and C. fructus, in morphological and physiological characteristics. Therefore, the name Candida pruni is proposed for the novel species, with sp-Quan (=CBS12814T = KCTC 27526T = GCMC 6582T) as the type strain. Our study showed that Candida pruni is a novel yeast species with potential biocontrol against brown rot caused by M. fructicola on peaches.  相似文献   

13.
Kojic acid (KA), produced mainly by Aspergillus species, is a product of fungal secondary metabolism and has great potential in biotechnological applications. The use of KA has steadily increased, chiefly in the pharmaceutical industry, where KA is used for skin lightning. The market for KA has grown considerably in recent years and is expected to reach $39 million by 2026. In this review, we summarise the relevant information regarding the application of KA, describe the optimal cultivation conditions for Aspergillus species used in the production of KA, and assess the prospects for the KA market. Based on our findings, we established that the highest yields of KA can be achieved using submerged fermentation with glucose and yeast extract as the primary sources of carbon and nitrogen, respectively. Furthermore, according to literature, the main species/strains reported as the best producers of KA are Aspergillus flavus (44-L), Aspergillus oryzae (AR-47 and NRRL 484), and Aspergillus terreus (C5-10 mutant of the strain PTCC 5283). Given the commercial importance of KA and the growing demand for this natural product, further studies are needed to identify novel strains of Aspergillus as potential high producers of this acid. Similarly, it will be desirable to identify novel sources of substrate for the low-cost production of KA, thereby promoting its production for use in pharmaceutical, healthcare, and other potential industrial applications. In addition, given the current limited knowledge regarding the biosynthetic pathway of KA, further studies are required to elucidate that biosynthetic pathway.  相似文献   

14.
《Mycoscience》2020,61(2):71-75
Aspergillus is a monophyletic genus comprising the subgenera Aspergillus, Circumdati, Cremei, Fumigati, Nidulantes and Polypaecilum. The subgenus Circumdati contains many economically important species and mycotoxin producers. Section Jani was recently introduced with morphological and molecular support. In the present study, two strains isolated from farmland soil were assigned in section Jani based on multi-locus phylogenetic analyses but showed low similarity with existing species. Further morphological observation found they had wider vesicles and conidia connections which were different from the known species. Based on phylogenetic and morphological data, Aspergillus yunnanensis was introduced as the third species in section Jani. Members in section Jani are rarely distributed, this is the first report of this section in China.  相似文献   

15.
Phaseolus vulgaris is a legume indigenous to America which is currently cultivated in Europe including countries located at the Southeast of this continent, such as Croatia, where several local landraces are cultivated, most of them of Andean origin. In this work we identify at species and symbiovar levels several fast-growing strains able to form effective symbiosis with P. vulgaris in different Croatian soils. The identification at species level based on MALDI-TOF MS and core gene sequence analysis showed that most of these strains belong to the species R. leguminosarum, R. hidalgonense and R. pisi. In addition, several strains belong to putative new species phylogenetically close to R. ecuadorense and R. sophoriradicis. All Croatian strains belong to the symbiovar phaseoli and harbour the α and γ nodC alleles typical for American strains of this symbiovar. Nevertheless, most of Croatian strains harboured the γ nodC gene allele supporting its Andean origin since it is also dominant in other European countries, where Andean cultivars of P. vulgaris are traditionally cultivated, as occurs in Spain. The only strains harbouring the α nodC allele belong to R. hidalgonense and R. pisi, this last only containing the symbiovars viciae and trifolii to date. This is the first report about the presence in Europe of the species R. hidalgonense, the nodulation of P. vulgaris by R. pisi and the existence of the symbiovar phaseoli within this species. These results significantly increase the knowledge of the biogeography of Rhizobium-P. vulgaris symbiosis.  相似文献   

16.
Some strains of Aspergillus niger have been previously reported to produce sclerotia under certain conditions. Sclerotia are aggregations of hyphae which can act either as survival or as sexual structures in species related to A. niger. In this study, we were able to induce the formation of sclerotia in the progenitor of the industrial citric acid producing strains of A. niger, ATCC 1015, and in pyrG mutants derived from it. Sclerotia can be stably formed by ATCC 1015 on malt extract agar medium supplemented with raisins, showing a spatial differentiation of the fungus dependent on the addition and on the position of the fruits into the medium. On other media, including malt extract agar, pyrG auxotrophs also form abundant sclerotia, while the complementation of this gene reverses this phenotype. Additionally, a macro- and microscopical analysis of the sclerotia is reported. Our results show that the sclerotia formed by A. niger are similar to those formed by other fungi, not only in their morphology but also in their ability to germinate and regenerate the organism.  相似文献   

17.
The phenotypic and genotypic diversity of the plant growth promoting Bacillus genus have been widely investigated in the rhizosphere of various agricultural crops. However, to our knowledge this is the first report on the Bacillus species isolated from the rhizosphere of Calendula officinalis. 15 % of the isolated bacteria were screened for their important antifungal activity against Fusarium oxysporum, Botrytis cinerea, Aspergillus niger, Cladosporium cucumerinium and Alternaria alternata. The bacteria identification based on 16S r-RNA and gyrase-A genes analysis, revealed strains closely related to Bacillus amyloliquefaciens, B. velezensis, B. subtilis sub sp spizezenii and Paenibacillus polymyxa species. The electro-spray mass spectrometry coupled to liquid chromatography (ESI-LC MS) analysis showed that most of the Bacillus isolates produced the three lipopeptides families. However, the P. polymyxa (18SRTS) didn’t produce any type of lipopeptides. All the tested Bacillus isolates produced cellulase but the protease activity was observed only in the B. amyloliquefaciens species (9SRTS). The Salkowsky colorimetric test showed that the screened bacteria synthesized 6–52 μg/ml of indole 3 acetic acid. These bacteria produced siderophores with more than 10 mm wide orange zones on chromazurol S. The greenhouse experiment using a naturally infested soil with Sclerotonia sclerotiorum showed that the B. amyloliquefaciens (9SRTS) had no significant (P > 0.05) effect on the pre-germination of the chickpea seeds. However, it increased the size of the chickpea plants and reduced the stem rot disease (P < 0.05).These results suggested that the Bacillus strains isolated in this work may be further used as bioinoculants to improve the production of C. officinalis and other crop systems.  相似文献   

18.
To screen antagonistic fungi against plant pathogens, dual culture assay (DCA) and culture filtrate assay (CFA) were performed with unknown soil-born fungi. Among the different fungi isolated and screened from the soil, fungal isolate ANU-301 successfully inhibited growth of different plant pathogenic fungi, Colletotrichum acutatum, Alternaria alternata, and Fusarium oxysporum, in DCA and CFA. Morphological characteristics and rDNA internal transcribed spacer sequence analysis identified ANU-301 as Aspergillus terreus. Inoculation of tomato plants with Fusarium oxysporum f. sp. lycopersici (FOL) induced severe wilting symptom; however, co-inoculation with ANU-301 significantly enhanced resistance of tomato plants against FOL. In addition, culture filtrate (CF) of ANU-301 not only showed bacterial growth inhibition activity against Dickeya chrysanthemi (Dc), but also demonstrated protective effect in potato tuber against soft rot disease. Gas chromatography-tandem mass spectrometry analysis of CF of ANU-301 identified 2,4-bis(1-methyl-1-phenylethyl)-phenol (MPP) as the most abundant compound. MPP inhibited growth of Dc, but not of FOL, in a dose-dependent manner, and protected potato tuber from the soft rot disease induced by Dc. In conclusion, Aspergillus terreus ANU-301 could be used and further tested as a potential biological control agent.  相似文献   

19.
20.
Heme-containing peroxidases from white rot basidiomycetes, in contrast to most proteins of fungal origin, are poorly produced in industrial filamentous fungal strains. Factors limiting peroxidase production are believed to operate at the posttranslational level. In particular, insufficient availability of the prosthetic group which is required for peroxidase biosynthesis has been proposed to be an important bottleneck. In this work, we analyzed the role of two components of the secretion pathway, the chaperones calnexin and binding protein (BiP), in the production of a fungal peroxidase. Expression of the Phanerochaete chrysosporium manganese peroxidase (MnP) in Aspergillus niger resulted in an increase in the expression level of the clxA and bipA genes. In a heme-supplemented medium, where MnP was shown to be overproduced to higher levels, induction of clxA and bipA was also higher. Overexpression of these two chaperones in an MnP-producing strain was analyzed for its effect on MnP production. Whereas bipA overexpression seriously reduced MnP production, overexpression of calnexin resulted in a four- to fivefold increase in the extracellular MnP levels. However, when additional heme was provided in the culture medium, calnexin overexpression had no synergistic effect on MnP production. The possible function of these two chaperones in MnP maturation and production is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号