首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
闭环刺激是深部脑刺激(deep brain stimulation,DBS)的重要发展方向之一,有望用于治疗多种脑神经系统疾病.与常规开环的长时间持续刺激不同,闭环刺激通常采用短促的高频脉冲序列.而神经元对于高频刺激的响应存在暂态过程,在初期的短时间内会发生很大变化,从而影响闭环刺激的作用.为了研究这种暂态过程,在大鼠海马CA1区传出轴突纤维(alveus)上施加不同频率的恒频以及随机变频的逆向高频刺激(antidromic high-frequency stimulation,A-HFS),并以逆向诱发的群峰电位(antidromically-evoked population spike,APS)的幅值作为指标来考察神经元群体的响应.研究结果表明,100、133和200 Hz的恒频A-HFS初期,APS迅速衰减,脉冲频率越高,APS衰减越快.平均不到1 s时间内APS的幅值就会下降一半以上,100 Hz时的平均半衰期为~0.96 s,频率增加1倍至200 Hz时,平均半衰期缩短至~0.21 s.使用100~200 Hz范围内实时微调脉冲间隔的随机变频刺激,则可以显著延缓神经元响应的衰减速度,延长刺激作用的维持时间.这些结果可以为短促闭环刺激等DBS新模式的开发提供依据.  相似文献   

2.
深部脑刺激(deep brain stimulation,DBS)在许多神经系统疾病的临床治疗上都展现出良好的应用前景,然而,其作用机制尚不明确.常规DBS采用高频刺激(high frequency stimulation,HFS)的脉冲序列,这种窄脉冲最容易激活神经元结构中的轴突部分,通过轴突的投射,将HFS的作用传播至下游神经元.因此,为了探讨DBS的作用机制,并鉴于海马脑区是治疗癫痫和痴呆症等疾病的重要靶点,我们研究了海马区轴突HFS对于下游神经元的作用.对麻醉大鼠的海马CA1区传入神经通路Schaffer侧支施加1 min的100 Hz高频刺激,记录并提取下游CA1区锥体神经元和中间神经元的单元锋电位.计算锋电位的发放率,以及它们与刺激脉冲之间的锁相值(phase-locking value,PLV)和潜伏期,以定量分析HFS期间神经元动作电位发放的变化趋势.结果显示,在传入轴突上施加HFS时,初期会诱发下游神经元群体同步产生动作电位(即群峰电位).在HFS后期(群峰电位消失之后),两类神经元的单元锋电位发放仍然持续,并且发放率较稳定.但是,锋电位与刺激脉冲之间的锁相性逐渐减弱、潜伏期逐渐延长.而且,与中间神经元相比较,锥体神经元锋电位的锁相性更弱、潜伏期更长.这些结果表明,持续的轴突HFS可以诱导下游神经元产生非同步的活动,高频脉冲刺激引起的不完全轴突传导阻滞可能是导致该现象产生的主要原因.本文的研究为揭示脑刺激的作用机制提供了重要信息.  相似文献   

3.
通常采用恒定电脉冲间隔的高频刺激(high-frequency stimulation,HFS),进行深部脑刺激治疗帕金森氏症等运动障碍疾病.为了开发适用于不同脑疾病治疗的新刺激模式,近年来脉冲间隔(inter-pulse-interval,IPI)变化的变频刺激模式受到关注.已有研究表明,即使具有相同的平均电脉冲频率,变频刺激与恒频刺激的治疗效果也不同.我们推测,变频刺激的短小IPI变化就足以改变HFS对于神经元的作用.为了验证此推测,本文在大鼠海马CA1区锥体神经元的输入轴突纤维上交替施加恒频刺激(100或133 Hz,即IPI=10 ms或7.5 ms)和随机变频刺激(100~200 Hz,即IPI=5~10 ms,平均频率为133 Hz),记录并分析刺激下游神经元群体的诱发电位,用于定量评价神经元对于恒频和变频刺激的响应.实验结果表明,持续的恒频刺激使得神经元的响应从最初的同步发放形成的群峰电位(population spike,PS)转变为非同步的动作电位发放(即单元锋电位).但是,当刺激切换为变频模式时,却又可以诱发神经元群体同步产生动作电位,重新形成PS波.并且,变频刺激诱发的PS幅值和神经元发放的同步程度可达基线的单脉冲刺激诱发波的水平.但是,PS的发生率只有脉冲刺激频率的7%左右,表明在持续的变频刺激时,多个脉冲累积的作用才能诱发这种同步的神经元发放.而且PS的出现与前导IPI的长度之间存在一定关系.神经元的轴突和突触等结构对于高频刺激的非线性响应可能是变频刺激诱发同步活动的原因.这些结果表明,变频刺激序列中短小的间隔变化可以产生与恒定间隔不同的调控作用.本文的结果对于揭示脑刺激的作用机制,促进新型刺激模式的开发及其在不同类型脑疾病治疗中的应用具有重要意义.  相似文献   

4.
持续高频刺激改变短刺激产生的神经网络效应   总被引:1,自引:1,他引:0  
不同时长的电脉冲高频刺激(high frequency stimulation,HFS)对于脑神经系统具有不同的作用.其中,数秒时长的短促HFS可通过"点燃"效应制作动物癫痫模型,也可以产生长时间保持的突触可塑性变化,而数分钟以上的长时HFS却可以安全地用于临床的深部脑刺激,治疗多种脑疾病.因此推测,持续的HFS可以改变短促刺激产生的效应.为了验证此推测,在大鼠海马CA1区的输入轴突纤维Schaffer侧支上,分别施加5 s和2 min两种时长的100 Hz HFS,并监测刺激结束后下游神经元群体对于单脉冲测试的响应电位,即群峰电位(population spike,PS).结果显示,5 s短HFS结束时会紧跟后放电痫样活动,并且,从测试脉冲诱发的PS幅值和潜伏期可见,短HFS诱导的兴奋性增强可以维持数十分钟.反之,2 min的长HFS结束时紧随之后的是数十秒无发放活动的静息期,而且,PS在数分钟内即恢复到HFS前的基线水平.这些结果表明,长时HFS的后期刺激可以改变前期短促刺激对于下游神经网络的作用,即消除短刺激可能产生的长时程兴奋效应.此发现对于深入了解高频刺激的作用机制、促进深部脑刺激的临床应用具有重要意义.  相似文献   

5.
深部脑刺激(deep brain stimulation,DBS)已在临床上广泛用于治疗帕金森病等疾病引起的运动障碍,它在难治性癫痫、顽固性强迫症等其他脑中枢神经系统疾病的治疗上也展现出良好的应用前景.经过30多年的临床应用、动物实验和计算模型仿真等多方面的研究,DBS的机制也逐渐明朗.虽然尚无定论,但已取得许多重要进展.本文从电生理角度分析和总结了有关DBS机制的发展历程.从早期的抑制论和兴奋论到目前主导的调控论;从关注刺激位点的神经元活动,到发现神经元胞体与轴突活动的去耦合,再到高频刺激诱导的间歇性轴突阻滞,以及由此轴突活动可能导致的投射区神经元群体的去同步活动.这一系列研究进展表明DBS具有复杂的神经网络调控机制.了解DBS的作用机制对于提高其疗效、开发新刺激模式以及扩大临床应用的范围都具有重要意义.  相似文献   

6.
深部脑刺激(deep brain stimulation,DBS)已成为治疗帕金森病等运动障碍疾病的常规方法之一,并且在许多其他神经和精神疾病的治疗中也具有良好的应用前景.但是,目前常规DBS采用单通道恒定脉冲间隔的高频刺激(high frequency stimulation,HFS),刺激模式缺少多样化,限制了DB...  相似文献   

7.
全身麻醉若操作不当可能造成致命的中枢神经系统损伤,因此其安全性受到广泛关注.为了揭示麻醉不断加深的过程中神经元活动的变化规律,本文研究了大鼠在乌拉坦(urethane)深度麻醉至脑死亡期间海马区神经元兴奋性和信号传导功能的变化.利用微电极阵列记录和电刺激技术,在海马CA1区胞体层分别记录Schaffer侧支上正向刺激和海马白质上反向刺激诱发的群峰电位(population spike,PS).以PS的幅值和潜伏期为指标,分析海马神经元活动的变化.结果表明,随着乌拉坦血药浓度的增加,PS幅值逐渐减小,潜伏期逐渐延长,意味着乌拉坦抑制了神经元的兴奋性以及轴突传导和突触传递.特别是这些变化存在明显的转折点(即突变),将整个衰减过程分成慢变和快变2个阶段.快变期的剧烈衰减迅速导致脑死亡.而且,引起突变的决定性因素可能是乌拉坦的血药浓度,而非麻醉时间的长短.但是,当乌拉坦注射速率较慢时,延长的慢变期仍然会使神经元功能的受损加重.这些研究结果为动物实验的麻醉操作和临床麻醉的安全应用提供了重要的信息.  相似文献   

8.
为了正确检测和研究高频电刺激(high frequencystimulation,HFS)期间神经元的动作电位发放活动,进而深入揭示深部脑刺激治疗神经系统疾病的机制,本课题研究HFS期间锋电位波形的变化.在麻醉大鼠海马CA1区的输入神经通路Schaffer侧支上,施加1~2 min时长的100或者200 Hz顺向高频刺激(orthodromic-HFS,O-HFS),利用微电极阵列采集刺激下游神经元的多通道锋电位信号,并获得由O-HFS经过单突触传导激活的中间神经元的单元锋电位波形及其特征参数.结果表明,O-HFS使得锋电位的幅值明显减小而半高宽明显增加,以基线记录为基准计算百分比值,O-HFS期间锋电位的降支幅值和升支幅值分别可减小20%和40%左右,半高宽则增加10%以上.并且,在大量神经元同时产生动作电位期间,或者在比200 Hz具有更大兴奋作用的100 Hz刺激期间,锋电位波形的改变更多,幅值的减小可达50%,宽度的增加可达20%.可以推测,高频电刺激对于神经元的兴奋作用可能升高细胞膜电位,从而改变细胞膜离子通道的活动特性,导致动作电位波形的改变.这些结果支持深部脑刺激具有兴奋性调节作用的假说,对于正确分析高频电刺激期间神经元锋电位活动具有指导意义,也为进一步研究深部脑刺激(DBS)治疗脑神经系统疾病的机制提供了重要线索.  相似文献   

9.
深部脑刺激器(deep brain stimulator),也经常被称为脑起搏器,是可植入人体设备,并连续不断地传送刺激脉冲到深部脑组织的特定区域,即所谓的深部脑刺激(deep brain stimulation,DBS).迄今为止,深部脑刺激是治疗严重顽固抗药性运动障碍疾病(如帕金森病,原发性震颤及肌张力异常等)的最有效的外科治疗手段之一.此外,广大的科研工作者也不断地探索应用DBS治疗其他神经及精神异常(如,癫痫和强迫症)的新的临床应用.尽管应用DBS治疗运动障碍非常有效,并也迅速被探索性地应用到其他神经障碍治疗中,但其作用机制仍然不是十分清楚,成为学者们争论的热点.DBS治疗效果的作用机制通常有两种基本的观点:高频刺激抑制学说及高频刺激兴奋学说.基于最近发表的关于中枢神经系统内的高频刺激效应的资料、数据及相关评论,两种机制共存并发挥作用的DBS作用假说被提出,认为DBS通过施加高频刺激干扰并控制了核团病理性紊乱随机活动,同时施加兴奋性刺激到其他基底节的网络,以实现对帕金森病的治疗.  相似文献   

10.
晚时相长时程增强(late-phase long-term potentiation,L-LTP)对于海马长期记忆的维持具有非常重要的作用,然而L-LTP可被诱导之后的神经元活动所翻转。本实验旨在研究海马CA1区L-LTP的翻转是否有突触前机制的参与以及L-LTP翻转前后AMPARs的表达有无变化。实验采用海马脑薄片细胞外场电位记录技术,使用强直刺激(high-frequency stimulation,HFS)诱导出CA1区L-LTP,2h后用两组间隔10min的高强度的双脉冲低频刺激(high-intensity paired-pulse low frequency stimulation,HI-PP-LFS)诱导L-LTP翻转。在LTP诱导前、诱导2h后、翻转后均给予一个双脉冲刺激,观察双脉冲比值(paired-pulse ratio,PPR)的变化;另一方面,实验通过免疫荧光组织化学方法观察AMPAR/GluR2在L-LTP翻转前后海马CA1区表达的变化。结果显示,L-LTP诱导后2h,HI-PP-LFS可诱导L-LTP的部分翻转(翻转率为61.79%±14.51%)。LTP诱导前、诱导2h后、翻转后PPR均大于1,表现为双脉冲易化(paired-pulse facilitation,PPF),且三者大小顺序为:LTP诱导后LTP翻转后LTP诱导前;在海马CA1区AMPAR/GluR2亚单位的表达方面,对照组、LTP组及LTP翻转组之间没有显著差异。上述结果提示,海马CA1区L-LTP维持与翻转均有突触前机制的参与,但L-LTP诱导与翻转前后AMPAR/GluR2表达没有发生变化。  相似文献   

11.
Electrical stimulation of the central nervous system creates both orthodromically propagating action potentials, by stimulation of local cells and passing axons, and antidromically propagating action potentials, by stimulation of presynaptic axons and terminals. Our aim was to understand how antidromic action potentials navigate through complex arborizations, such as those of thalamic and basal ganglia afferents-sites of electrical activation during deep brain stimulation. We developed computational models to study the propagation of antidromic action potentials past the bifurcation in branched axons. In both unmyelinated and myelinated branched axons, when the diameters of each axon branch remained under a specific threshold (set by the antidromic geometric ratio), antidromic propagation occurred robustly; action potentials traveled both antidromically into the primary segment as well as "re-orthodromically" into the terminal secondary segment. Propagation occurred across a broad range of stimulation frequencies, axon segment geometries, and concentrations of extracellular potassium, but was strongly dependent on the geometry of the node of Ranvier at the axonal bifurcation. Thus, antidromic activation of axon terminals can, through axon collaterals, lead to widespread activation or inhibition of targets remote from the site of stimulation. These effects should be included when interpreting the results of functional imaging or evoked potential studies on the mechanisms of action of DBS.  相似文献   

12.
Intracellular recording techniques were used to study electrical activity in bipolar sensory cells associated with crayfish tactile receptors. Several lines of evidence indicate that spikes evoked by natural stimulation of the receptor originate at a dendritic locus. Although overshooting spikes are recorded in the soma in response to both natural and antidromic stimulation receptor potentials are observed only rarely, and, when present, their amplitude is less than 5 mv. Impulses propagating centrifugally into the soma following antidromic stimulation always exhibit an inflection in the rising phase of the spike; however, orthodromic spikes are usually uninflected. Occasionally, orthodromic responses (in the soma) exhibit rather unusual wave forms. Such spikes evoked by natural stimuli are indistinguishable from those elicited electrically in the dendrite, but they do not resemble antidromic impulses. Because the axonal and dendritic boundaries of the soma have a low safety factor for spike transmission, at high frequencies invasion of the soma by dendritic spikes is impeded and often blocked. The soma region can thus act as a low-pass filter. The significance of this self-limiting mechanism for the behavior of the animal is not known; it is suggested, however, that this impediment is a potentially critical one, and may, in other situations, have encouraged the evolution of alternative arrangements.  相似文献   

13.
Experiments were performed in rat hippocampal slices. Activity of individual CA3 pyramidal neurons and field potentials in the CA1 areas were recorded extracellularly. The collision technique was applied to detect the antidromic origin of the background action potentials in the somata of CA3 neurons. Threshold stimulation of terminals of the Schaffer collaterals in the stratum radiatum of the CA1 area was applied to study their excitability during the CA1 long-term potentiation. During the long-term potentiation, antidromic action potentials appeared in the somata of the CA3 neurons. The obtained evidence suggests that the synaptic potentiation is accompanied by an enhancement of axon terminal excitability resulting in generation of the action potentials.  相似文献   

14.
A preparation of the desert locust, Schistocera gregaria, has been developed, in which it was possible to work with identified neurons while still allowing some behavior. A total of 26 motorneurons to the hind leg were studied singly, and in various pairs, both by direct stimulation, and by recording during spontaneous activity and various reflex actions. Motorneurons were identified by passing current into their somata and correlating the evoked somata spikes with extracellularly or intracellularly recorded events in the muscles. Tension of the muscle was also recorded and motor axons were stimulated to evoke antidromic spikes in the somata. Both epsp's and ipsp's can be seen clearly in recordings from the somata; spikes appear as electrotonically conducted remnants only. Somata exhibited little or no electrogenesis. It is inferred that impulses are initiated in a zone tentatively identified with the region of emergence of the motor axon from the neuropil. Integration occurs in the neuropilar segment, with the soma serving as a parallel RC element. Data was obtained on the central mechanisms of coordination of synergistic and antagonistic motorneurons and on the modes of excitation of slow and fast neurons to the same muscles.  相似文献   

15.
Experiments on anesthetized and immobilized cats showed that repeated antidromic discharges can be evoked in 32.5% of sympathetic preganglionic neurons of the lateral horns in segments T3, T8–9, and L2 of the spinal cord, with intervals of 16 msec or more between them, which is much greater than the refractory period of these neurons. This feature was shown not to be connected with the properties of axons of that group of neurons and, in particular, with their after-subnormality. After orthodromic discharges in neurons of this group, for a much longer period of time than could be accounted for by possible collision, no antidromic discharges likewise were evoked. As a result of antidromic activation of some of these neurons in one segment, definite inhibition of the orthodromic response of other neurons of the same segment appeared, etiher by a reflex mechanism or through stimulation of descending pathways. The results point definitely to the existence of a mechanism of recurrent inhibition in some sympathetic preganglionic neurons of the lateral horns.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 382–389, July–August, 1977.  相似文献   

16.
A study has been made of Aplysia nerve cells, mainly in the pleural ganglia, in which the main axon divides into at least two branches in the neighbourhood of the soma. Conduction between these branches was investigated by intracellular recordings from the soma following antidromic stimulation via the nerves containing the axonal branches. It has been shown that transmission between separate branches need not involve discharge of the soma but only of the axonal region between the soma and the origin of the branches. In some cells, the spike may fail to invade the other axonal branch, whereas transmission in the opposite direction is readily achieved. Often spikes in none of the branches are transmitted to the others, unless facilitated. Indications about the geometry of the neuron in the vicinity of the soma may be obtained from the study of the relative size of the A spikes originated in different branches. These observations, together with the presence of different sizes of A spikes, produced by orthodromic stimulation, provide evidence that spikes initiated at separate axonal "trigger zones" of Aplysia neurons may be conducted selectively to the effectors or other neurons innervated by the particular branch.  相似文献   

17.
The contribution of axonal activity to the ionic currents which generate bursting pacemaker activity was studied by using the two-electrode voltage-clamp technique in Aplysia bursting neuron somata in conjunction with intraaxonal voltage recordings. Depolarizing voltage-clamp pulses applied to bursting cell somata triggered axonal action potentials. The voltage-clamp current recording exhibited transient inward current "notches" corresponding to each of the axonal spikes. The addition of 50 microM tetrodotoxin (TTX) to the bathing medium blocked the fast axonal spikes and current notches, revealing a slower axonal spike which was blocked by the replacement of external Ca2+ with Co2+. The inward current evoked by applying a depolarizing voltage-clamp pulse in the soma is distorted by the occurrence of the axonal Ca2+ spike. Elimination of the axonal spike, by injecting hyperpolarizing current into the axon, changes both the time course and the magnitude of the inward current. The axonal Ca2+ spikes are followed by a series of Ca2+-dependent afterpotentials: a rapid postspike hyperpolarization, a depolarizing afterpotential (DAP) and, finally, a long-lasting postburst hyperpolarization. The long-lasting hyperpolarization is not blocked by 50 mM external tetraethyl ammonium, an effective blocker of Ca2+-activated K+ current [IK(Ca)], and does not appear to reverse at EK. Hence, the axonal long-lasting hyperpolarization may not be due to IK(Ca). Somatic voltage-clamp pulses in bursting neurons are followed by a slow inward tail current, which is sometimes coincident with a DAP in the axon. In some cells, the amplitude of the slow inward tail current is greatly reduced if axonal spikes and DAPs are prevented by hyperpolarization of the axon, while, in other cells, elimination of axonal activity has little effect. Therefore, the slow inward tail current is not necessarily an artifact of poor voltage-clamp control over the axonal membrane potential but probably results from the activation of an ionic conductance mechanism located partly in the axon and partly in the soma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号