首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ribosomal rDNA gene array is an epigenetically-regulated repeated gene locus. While rDNA copy number varies widely between and within species, the functional consequences of subtle copy number polymorphisms have been largely unknown. Deletions in the Drosophila Y-linked rDNA modifies heterochromatin-induced position effect variegation (PEV), but it has been unknown if the euchromatic component of the genome is affected by rDNA copy number. Polymorphisms of naturally occurring Y chromosomes affect both euchromatin and heterochromatin, although the elements responsible for these effects are unknown. Here we show that copy number of the Y-linked rDNA array is a source of genome-wide variation in gene expression. Induced deletions in the rDNA affect the expression of hundreds to thousands of euchromatic genes throughout the genome of males and females. Although the affected genes are not physically clustered, we observed functional enrichments for genes whose protein products are located in the mitochondria and are involved in electron transport. The affected genes significantly overlap with genes affected by natural polymorphisms on Y chromosomes, suggesting that polymorphic rDNA copy number is an important determinant of gene expression diversity in natural populations. Altogether, our results indicate that subtle changes to rDNA copy number between individuals may contribute to biologically relevant phenotypic variation.  相似文献   

2.
3.

Background

There have been conflicting reports in the literature on association of gene copy number with disease, including CCL3L1 and HIV susceptibility, and β-defensins and Crohn''s disease. Quantification of precise gene copy numbers is important in order to define any association of gene copy number with disease. At present, real-time quantitative PCR (QPCR) is the most commonly used method to determine gene copy number, however the Paralogue Ratio Test (PRT) is being used in more and more laboratories.

Findings

In this study we compare a Pyrosequencing-based Paralogue Ratio Test (PPRT) for determining beta-defensin gene copy number with two currently used methods for gene copy number determination, QPCR and triplex PRT by typing five different cohorts (UK, Danish, Portuguese, Ghanaian and Czech) of DNA from a total of 576 healthy individuals. We found a systematic measurement bias between DNA cohorts revealed by QPCR, but not by the PRT-based methods. Using PRT, copy number ranged from 2 to 9 copies, with a modal copy number of 4 in all populations.

Conclusions

QPCR is very sensitive to quality of the template DNA, generating systematic biases that could produce false-positive or negative disease associations. Both triplex PRT and PPRT do not show this systematic bias, and type copy number within the correct range, although triplex PRT appears to be a more precise and accurate method to type beta-defensin copy number.  相似文献   

4.
The rDNA cluster in Saccharomyces cerevisiae is located 450 kb from the left end and 610 kb from the right end of chromosome XII and consists of ~150 tandemly repeated copies of a 9.1 kb rDNA unit. To explore the biological significance of this specific chromosomal context, chromosome XII was split at both sides of the rDNA cluster and strains harboring deleted variants of chromosome XII consisting of 450 kb, 1500 kb (rDNA cluster only) and 610 kb were created. In the strain harboring the 1500 kb variant of chromosome XII consisting solely of rDNA, the size of the rDNA cluster was found to decrease as a result of a decrease in rDNA copy number. The frequency of silencing of URA3 inserted within the rDNA locus was found to be greater than in a wild-type strain. The localization and morphology of the nucleolus was also affected such that a single and occasionally (6–12% frequency) two foci for Nop1p and a rounded nucleolus were observed, whereas a typical crescent-shaped nucleolar structure was seen in the wild-type strain. Notably, strains harboring the 450 kb chromosome XII variant and/or the 1500 kb variant consisting solely of rDNA had shorter life spans than wild type and also accumulated extrachromosomal rDNA circles. These observations suggest that the context of chromosome XII plays an important role in maintaining a constant rDNA copy number and in physiological processes related to rDNA function in S.cerevisiae.  相似文献   

5.
The proliferation of retrotransposons within a genome can contribute to increased size and affect the function of eukaryotic genes. BEL/Pao-like long-terminal repeat (LTR) retrotransposons were annotated from the highly adaptable insect species Diabrotica virgifera virgifera, the Western corn rootworm, using survey sequences from bacterial artificial chromosome (BAC) inserts and contigs derived from a low coverage next-generation genome sequence assembly. Eleven unique D. v. virgifera BEL elements were identified that contained full-length gagpol coding sequences, whereas 88 different partial coding regions were characterized from partially assembled elements. Estimated genome copy number for full and partial BEL-like elements ranged from ~ 8 to 1582 among individual contigs using a normalized depth of coverage (DOC) among Illumina HiSeq reads (total genome copy number ~ 8821). BEL element copy number was correlated among different D. v. virgifera populations (R2 = 0.9846), but individual element numbers varied ≤ 1.68-fold and the total number varied by ~ 527 copies. These data indicate that BEL element proliferation likely contributed to a large genome size, and suggest that differences in copy number are a source of genetic variability among D. v. virgifera.  相似文献   

6.
7.
Freezing tolerance and winter hardiness are complex traits. In the Triticeae, two loci on the group 5 chromosome homoeologs are repeatedly identified as having major effects on these traits. Recently, we found that segments of the genomic region at one of these loci, Frost resistance-2 (Fr-2) is copy number variable in barley. Freezing-tolerant winter-hardy genotypes have greater tandem copy numbers of the genomic region encompassing the C-repeat binding factor genes Cbf2A and Cbf4B at Fr-H2 than the less freezing-tolerant nonwinter-hardy genotypes. Here we report that in wheat the Cbf14 gene at Fr-2 is copy number variable. Using DNA blot hybridizations, we estimated copy numbers of Cbf14 across the different genomes of diploid and polyploid wheat. Copy numbers of Cbf14 are lower in the B genome than in the A and D genomes across all ploidy levels. Among hexaploid red wheats, winter genotypes harbor greater Cbf14 copy numbers than spring genotypes. Cbf14 copy numbers also vary across the red winter wheats such that hard wheats harbor greater copy numbers than soft wheats. Analysis of hexaploid wheat chromosome 5 substitution lines indicates that Cbf14 copy numbers in the introgressions are stable in the different backgrounds. Taken together our data suggest that higher copy number states existed in the diploid wild ancestors prior to the polyploidization events and that the loss of Cbf14 copies occurred in the cultivated germplasm.  相似文献   

8.
9.
Large tandem repeat sequences have been poorly investigated as severe technical limitations and their frequent absence from the genome reference hinder their analysis. Extensive allelotyping of this class of variation has not been possible until now and their mutational dynamics are still poorly known. In order to estimate the mutation rate of a macrosatellite, we analysed in detail the RNU2 locus, which displays at least 50 different alleles containing 5-82 copies of a 6.1 kb repeat unit. Mining data from the 1000 Genomes Project allowed us to precisely estimate copy numbers of the RNU2 repeat unit using read depth of coverage. This further revealed significantly different mean values in various recent modern human populations, favoring a scenario of fast evolution of this locus. Its proximity to a disease gene with numerous founder mutations, BRCA1, within the same linkage disequilibrium block, offered the unique opportunity to trace RNU2 arrays over a large timescale. Analysis of the transmission of RNU2 arrays associated with one ‘private’ mutation in an extended kindred and four founder mutations in multiple kindreds gave an estimation by maximum likelihood of 5 × 10−3 mutations per generation, which is close to that of microsatellites.  相似文献   

10.
11.
Monitoring of harmful algal bloom (HAB) species in coastal waters is important for assessment of environmental impacts associated with HABs. Co-occurrence of multiple cryptic species such as toxic dinoflagellate Ostreopsis species make reliable microscopic identification difficult, so the employment of molecular tools is often necessary. Here we developed new qPCR method by which cells of cryptic species can be enumerated based on actual gene number of target species. The qPCR assay targets the LSU rDNA of Ostreopsis spp. from Japan. First, we constructed standard curves with a linearized plasmid containing the target rDNA. We then determined the number of rDNA copies per cell of target species from a single cell isolated from environmental samples using the qPCR assay. Differences in the DNA recovery efficiency was calculated by adding exogenous plasmid to a portion of the sample lysate before and after DNA extraction followed by qPCR. Then, the number of cells of each species was calculated by division of the total number of rDNA copies of each species in the samples by the number of rDNA copies per cell. To test our procedure, we determined the total number of rDNA copies using environmental samples containing no target cells but spiked with cultured cells of several species of Ostreopsis. The numbers estimated by the qPCR method closely approximated total numbers of cells added. Finally, the numbers of cells of target species in environmental samples containing cryptic species were enumerated by the qPCR method and the total numbers also closely approximated the microscopy cell counts. We developed a qPCR method that provides accurate enumeration of each cryptic species in environments. This method is expected to be a powerful tool for monitoring the various HAB species that occur as cryptic species in coastal waters.  相似文献   

12.

Background

Rigorous study of mitochondrial functions and cell biology in the budding yeast, Saccharomyces cerevisiae has advanced our understanding of mitochondrial genetics. This yeast is now a powerful model for population genetics, owing to large genetic diversity and highly structured populations among wild isolates. Comparative mitochondrial genomic analyses between yeast species have revealed broad evolutionary changes in genome organization and architecture. A fine-scale view of recent evolutionary changes within S. cerevisiae has not been possible due to low numbers of complete mitochondrial sequences.

Results

To address challenges of sequencing AT-rich and repetitive mitochondrial DNAs (mtDNAs), we sequenced two divergent S. cerevisiae mtDNAs using a single-molecule sequencing platform (PacBio RS). Using de novo assemblies, we generated highly accurate complete mtDNA sequences. These mtDNA sequences were compared with 98 additional mtDNA sequences gathered from various published collections. Phylogenies based on mitochondrial coding sequences and intron profiles revealed that intraspecific diversity in mitochondrial genomes generally recapitulated the population structure of nuclear genomes. Analysis of intergenic sequence indicated a recent expansion of mobile elements in certain populations. Additionally, our analyses revealed that certain populations lacked introns previously believed conserved throughout the species, as well as the presence of introns never before reported in S. cerevisiae.

Conclusions

Our results revealed that the extensive variation in S. cerevisiae mtDNAs is often population specific, thus offering a window into the recent evolutionary processes shaping these genomes. In addition, we offer an effective strategy for sequencing these challenging AT-rich mitochondrial genomes for small scale projects.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1664-4) contains supplementary material, which is available to authorized users.  相似文献   

13.
To determine whether heterogeneity exists in the organization or redundancy of the rRNA cistrons of inbred populations of Drosophila melanogaster, we have derived a number of sublines from the strains Oregon R and Canton S. These two strains were chosen because our previous studies have demonstrated a difference in the competence of these strains to exhibit a "compensatory response" of the rDNA. In each subline, the X chromosomes are descended from a single maternal X, that is, each line is homozygous for a particular nucleolus organizer (NO). These derivative lines have been characterized in terms of rDNA content and organization, using quantitative liquid hybridizations and Southern blot analyses, respectively. Our studies reveal that both of the highly inbred parent populations contained a heterogeneous array of X chromosomal rDNA contents. Once isogenized, the rDNA redundancy of a given X chromosomal NO can be shown to remain stable for at least 20 generations in culture. We detect no restriction pattern heterogeneity among X chromosomes isolated from a given strain, despite relatively large differences in their rDNA contents. This leads us to suggest that there is no significant clustering of intervening sequence-bearing (ivs +) genes within the rDNA loci of chromosomes from the populations examined. Furthermore, we conclude that apparent alterations in rDNA redundancy known as the compensatory response are not related to the heterogeneity of rDNA content within a population.  相似文献   

14.
How does asexual reproduction influence genome evolution? Although is it clear that genomic structural variation is common and important in natural populations, we know very little about how one of the most fundamental of eukaryotic traits—mode of genomic inheritance—influences genome structure. We address this question with the New Zealand freshwater snail Potamopyrgus antipodarum, which features multiple separately derived obligately asexual lineages that coexist and compete with otherwise similar sexual lineages. We used whole-genome sequencing reads from a diverse set of sexual and asexual individuals to analyze genomic abundance of a critically important gene family, rDNA (the genes encoding rRNAs), that is notable for dynamic and variable copy number. Our genomic survey of rDNA in P. antipodarum revealed two striking results. First, the core histone and 5S rRNA genes occur between tandem copies of the 18S–5.8S–28S gene cluster, a unique architecture for these crucial gene families. Second, asexual P. antipodarum harbor dramatically more rDNA–histone copies than sexuals, which we validated through molecular and cytogenetic analysis. The repeated expansion of this genomic region in asexual P. antipodarum lineages following distinct transitions to asexuality represents a dramatic genome structural change associated with asexual reproduction—with potential functional consequences related to the loss of sexual reproduction.  相似文献   

15.
Fitness of aquatic animals can be limited by the scarcity of nutrients such as long-chain polyunsaturated fatty acids, especially docosahexaenoic acid (DHA). DHA availability from diet varies among aquatic habitats, imposing different selective pressures on resident animals to optimize DHA acquisition and synthesis. For example, DHA is generally poor in freshwater ecosystems compared to marine ecosystems. Our previous work revealed that, relative to marine fishes, several freshwater fishes evolved higher copy numbers of the fatty acid desaturase2 (Fads2) gene, which encodes essential enzymes for DHA biosynthesis, likely compensating for the limited availability of DHA in freshwater. Here, we demonstrate that Fads2 copy number also varies between freshwater sticklebacks inhabiting lakes and streams with stream fish having higher Fads2 copy number. Additionally, populations with benthic-like morphology possessed higher Fads2 copy number than those with planktivore-like morphology. This may be because benthic-like fish mainly feed on DHA-deficient prey such as macroinvertebrates whereas planktivore-like fish forage more regularly on DHA-rich prey, like copepods. Our results suggest that Fads2 copy number variation arises from ecological divergence not only between organisms exploiting marine and freshwater habitats but also between freshwater organisms exploiting divergent resources.  相似文献   

16.

Background

Multi-allelic copy number variants include examples of extensive variation between individuals in the copy number of important genes, most notably genes involved in immune function. The definition of this variation, and analysis of its impact on function, has been hampered by the technical difficulty of large-scale but accurate typing of genomic copy number. The copy-variable alpha-defensin locus DEFA1A3 on human chromosome 8 commonly varies between 4 and 10 copies per diploid genome, and presents considerable challenges for accurate high-throughput typing.

Results

In this study, we developed two paralogue ratio tests and three allelic ratio measurements that, in combination, provide an accurate and scalable method for measurement of DEFA1A3 gene number. We combined information from different measurements in a maximum-likelihood framework which suggests that most samples can be assigned to an integer copy number with high confidence, and applied it to typing 589 unrelated European DNA samples. Typing the members of three-generation pedigrees provided further reassurance that correct integer copy numbers had been assigned. Our results have allowed us to discover that the SNP rs4300027 is strongly associated with DEFA1A3 gene copy number in European samples.

Conclusions

We have developed an accurate and robust method for measurement of DEFA1A3 copy number. Interrogation of rs4300027 and associated SNPs in Genome-Wide Association Study SNP data provides no evidence that alpha-defensin copy number is a strong risk factor for phenotypes such as Crohn’s disease, type I diabetes, HIV progression and multiple sclerosis.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-719) contains supplementary material, which is available to authorized users.  相似文献   

17.
《Gene》1997,184(1):89-97
This report describes a transformation system leading to stable high copy number integration into the ribosomal DNA (rDNA) of the astaxanthin-producing yeast Phaffia rhodozyma. A plasmid was constructed that contains the transposon Tn5 encoded kanamycin resistance gene (KmR) fused in frame to the 5′-terminal portion of the Phaffia actin gene. This marker, driven by the Phaffia actin promoter, confers resistance to G418 (Geneticin). The plasmid also contains a rDNA portion that comprises the 18S rDNA and promotes high copy integration leading to stable Phaffia transformants that maintained the plasmid at high copy number after 15 generations of non-selective growth. Phaffia, strain CBS 6938, was found to contain the rDNA units in clusters distributed over three chromosomes with a total copy number of 61. Phaffia transformants were shown to have over 50 copies of pGB-Ph9 integrated in tandem in chromosomes that contain rDNA loci. The chromosomal shifts that occur as a result of these integrations as shown by pulsed field electrophoresis strongly suggest that Phaffia is haploid.  相似文献   

18.
There have been an increasing number of reports of yeast systemic infection involving Saccharomyces cerevisiae strains. The development of a rapid and reliable diagnostic tool is therefore warranted in order to explore the distribution of S. cerevisiae as an opportunistic pathogen in humans. In this study, we designed and validated five primer sets targeting the 26S rRNA gene of S. cerevisiae and the S. sensu stricto complex using 26 yeast strains. Among them, two sets of primers specifically amplified the 26S rRNA gene and the ITS region of S. cerevisiae strains, and three sets were specific for amplifying the same genes in the S. sensu stricto complex. After determining the optimal conditions of two primer pairs for quantitative real time PCR, human fecal samples were analyzed to examine the distribution of S. cerevisiae and the S. sensu stricto complex. It was possible to detect a single cell of S. cerevisiae in environmental sample. Qualitative PCR revealed that out of eleven fecal samples tested, one sample contained S. cerevisiae and four samples contained the S. sensu stricto complex. Quantitative real time PCR revealed that the target gene copy numbers of S. cerevisiae and the S. sensu stricto complex were 0.84 and 2.44 respectively, in 1 ng of DNA from the bulk fecal community.  相似文献   

19.
The major human complement regulator in blood, complement factor H (FH), has several closely related proteins, called FH-related (FHR) proteins. As all FHRs lack relevant complement regulatory activity, their physiological role is not well understood. FHR protein 3 (FHR-3) has been suggested to compete with FH for binding to Neisseria meningitidis, thereby affecting complement-mediated clearance. Clearly, the in vivo outcome of such competition greatly depends on the FH and FHR-3 concentrations. While FH levels have been established, accurate FHR-3 levels were never unequivocally reported to date. Moreover, CFHR3 gene copy numbers commonly vary, which may impact the FHR-3 concentration. Hence, we generated five anti-FHR-3 mAbs to specifically measure FHR-3 in human healthy donors of which we determined the gene copy number variation at the CFH/CFHR locus. Finally, we examined the acute-phase response characteristics of FHR-3 in a small sepsis cohort. We determined FHR-3 levels to have a mean of 19 nM and that under normal conditions the copy number of CFHR3 correlates to a very large extent with the FHR-3 serum levels. On average, FHR-3 was 132-fold lower compared to the FH concentration in the same serum samples and FHR-3 did not behave as a major acute phase response protein.  相似文献   

20.
The killer-cell immunoglobulin-like receptors (KIR) recognize human leukocyte antigen (HLA) molecules to regulate the cytotoxic and inflammatory responses of natural killer cells. KIR genes are encoded by a rapidly evolving gene family on chromosome 19 and present an unusual variation of presence and absence of genes and high allelic diversity. Although many studies have associated KIR polymorphism with susceptibility to several diseases over the last decades, the high-resolution allele-level haplotypes have only recently started to be described in populations. Here, we use a highly innovative custom next-generation sequencing method that provides a state-of-art characterization of KIR and HLA diversity in 706 individuals from eight unique South American populations: five Amerindian populations from Brazil (three Guarani and two Kaingang); one Amerindian population from Paraguay (Aché); and two urban populations from Southern Brazil (European and Japanese descendants from Curitiba). For the first time, we describe complete high-resolution KIR haplotypes in South American populations, exploring copy number, linkage disequilibrium, and KIR–HLA interactions. We show that all Amerindians analyzed to date exhibit the lowest numbers of KIR–HLA interactions among all described worldwide populations, and that 83–97% of their KIR–HLA interactions rely on a few HLA-C molecules. Using multiple approaches, we found signatures of strong purifying selection on the KIR centromeric region, which codes for the strongest NK cell educator receptors, possibly driven by the limited HLA diversity in these populations. Our study expands the current knowledge of KIR genetic diversity in populations to understand KIR–HLA coevolution and its impact on human health and survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号