首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Reporter-based studies support inhibition of translation at the level of initiation as a substantial component of the miRNA mechanism, yet recent global analyses have suggested that they predominantly act through decreasing target mRNA stability. Cells commonly coexpress several processing isoforms of an mRNA, which may also differ in their regulatory untranslated regions (UTR). In particular, cancer cells are known to express high levels of short 3' UTR isoforms that evade miRNA-mediated regulation, whereas longer 3' UTRs predominate in nontransformed cells. To test whether mRNA isoform diversity can obscure detection of miRNA-mediated control at the level of translation, we assayed the responses of 11 endogenous let-7 targets to inactivation of this miRNA in HeLa cells, an intensively studied model system. We show that translational regulation in many cases appears to be modest when measuring the composite polysome profile of all extant isoforms of a given mRNA by density ultracentrifugation. In contrast, we saw clear effects at the level of translation initiation for multiple examples when selectively profiling mRNA isoforms carrying the 5' or 3' untranslated regions that were actually permissive to let-7 action, or when let-7 and a second targeting miRNA were jointly manipulated. Altogether, these results highlight a caveat to the mechanistic interpretation of data from global miRNA target analyses in transformed cells. Importantly, they reaffirm the importance of translational control as part of the miRNA mechanism in animal cells.  相似文献   

3.
《Cell》2023,186(11):2438-2455.e22
  1. Download : Download high-res image (185KB)
  2. Download : Download full-size image
  相似文献   

4.
5.
6.
《Molecular cell》2022,82(8):1573-1588.e10
  1. Download : Download high-res image (189KB)
  2. Download : Download full-size image
  相似文献   

7.
BACKGROUND: The most common form of congenital muscular dystrophy is caused by a deficiency in the alpha2 chain of laminin-211, a protein of the extracellular matrix. A wide variety of mutations, including 20 to 30% of nonsense mutations, have been identified in the corresponding gene, LAMA2. A promising approach for the treatment of genetic disorders due to premature termination codons (PTCs) is the use of drugs to force stop codon readthrough. METHODS: Here, we analyzed the effects of two compounds on a PTC in the LAMA2 gene that targets the mRNA to nonsense-mediated RNA decay, in vitro using a dual reporter assay, as well as ex vivo in patient-derived myotubes. RESULTS: We first showed that both gentamicin and negamycin promote significant readthrough of this PTC. We then demonstrated that the mutant mRNAs were strongly stabilized in patient-derived myotubes after administration of negamycin, but not gentamicin. Nevertheless, neither treatment allowed re-expression of the laminin alpha2-chain protein, pointing to problems that may have arisen at the translational or post-translational levels. CONCLUSIONS: Taken together, our results emphasize that achievement of a clinical benefit upon treatment with novel readthrough-inducing agents would require several favourable conditions including PTC nucleotide context, intrinsic and induced stability of mRNA and correct synthesis of a full-length active protein.  相似文献   

8.
9.
10.
mRNA for neuronal Bak (N-Bak), a splice variant of pro-apoptotic Bcl-2 family member Bak is expressed in the neurons. Surprisingly the endogeneous N-Bak protein cannot be demonstrated in the neurons, although the antibodies recognize N-Bak protein from in vitro translation or transiently transfected cells. As N-Bak mRNA contains premature termination codon (PTC) at 89 nucleotides upstream from the last exon–exon junction, it could be degraded by nonsense-mediated decay (NMD) during the pioneer round of translation thus explaining the absence of the protein. We show here that the endogeneous neuronal N-Bak mRNA is not the NMD substrate, as it is not accumulating by cycloheximide treatment, it has a long lifetime, and even prevention of PTC by interfering with the alternative splicing did not lead to translation of the Bak mRNA. N-Bak protein is also not revealed by proteasome inhibitors. Our data suggest strong translational arrest of N-Bak mRNA in the neurons. We show that this arrest is partially mediated by 5′-untranslated region of Bak mRNA and it is not released during mitochondrial apoptosis.  相似文献   

11.
Reduced expression of SMN causes spinal muscular atrophy, a severe neurodegenerative disease. Despite the importance of maintaining SMN levels, relatively little is known about the mechanisms by which SMN levels are regulated. We show here that Gemin5, the snRNA-binding protein of the SMN complex, binds directly to the SMN mRNA and regulates SMN expression. Gemin5 binds with high specificity, both in vitro and in vivo, to sequence and structural elements in the SMN mRNA 3′-untranslated region that are reminiscent of the snRNP code to which Gemin5 binds on snRNAs. Reduction of Gemin5 redistributes the SMN mRNA from heavy polysomes to lighter polysomes and monosomes, suggesting that Gemin5 functions as an activator of SMN translation. SMN protein is not stoichiometrically present on the SMN mRNA with Gemin5, but the mRNA-binding activity of Gemin5 is dependent on SMN levels, providing a feedback mechanism for SMN to regulate its own expression via Gemin5. This work both reveals a new autoregulatory pathway governing SMN expression, and identifies a new mechanism through which SMN can modulate specific mRNA expression via Gemin5.  相似文献   

12.
13.
14.
The current studies focus on what mechanisms regulate the concentration of PLP mRNA in cells. The PLP mRNA is very stable and these studies suggest that its stability is regulated by a trans-acting factor specific to oligodendrocytes. In order to test whether the 3untranslated region (3UTR) of the PLP mRNA might regulate PLP RNA stability, C6 cells were transfected with cDNAs that expressed either luciferase or luciferase fused to the 3UTR of PLP. Although transgene expression was low, in cells transfected with the PLP 3UTR, there was a significant decrease in the endogenous PLP mRNA. These cells showed a distinct change in morphology and in adhesion properties. Thus, there may be a role for plp gene products in cell adhesion, which was downregulated in these cells, or an unknown function may be encoded by the PLP 3UTR. Transgenic mice that overexpress enhanced green fluorescent protein fused to the PLP 3UTR under control of PLP regulatory sequences were tested for the expression of the endogenous PLP mRNA. Three of four lines of transgenic mice had decreased endogenous PLP mRNA, relative to their non-transgenic littermates; the EGFP-PLP 3UTR mouse line that expressed the highest level of transgene mRNA had a 54% reduction in PLP mRNA. We hypothesize that the PLP mRNA is regulated by elements in the 3UTR and stabilizing proteins specific to oligodendrocytes, and that in cells that overexpress the PLP 3UTR, these stabilizing proteins may be insufficient to maintain the normal level of the endogenous PLP mRNA.  相似文献   

15.
mRNA surveillance pathways selectively clear defective mRNAs from the cell. As such, these pathways serve as important modifiers of genetic disorders. Nonsense-mediated decay (NMD), the most intensively studied surveillance pathway, recognizes mRNAs with premature termination codons (PTCs). In mammalian systems the location of a PTC more than 50 nucleotides 5' to the terminal exon-exon junction is a critical determinant of NMD. However, mRNAs with nonsense codons that fulfill this requirement but are located very early in the open reading frame can effectively evade NMD. The unexpected resistance of such mRNAs with AUG-proximal PTCs to accelerated decay suggests that important determinants of NMD remain to be identified. Here, we report that an NMD-sensitive mRNA can be stabilized by artificially tethering the cytoplasmic poly(A) binding protein 1, PABPC1, at a PTC-proximal position. Remarkably, the data further suggest that NMD of an mRNA with an AUG-proximal PTC can also be repressed by PABPC1, which might be brought into proximity with the PTC during cap-dependent translation and 43S scanning. These results reveal a novel parameter of NMD in mammalian cells that can account for the stability of mRNAs with AUG-proximal PTCs. These findings serve to expand current mechanistic models of NMD and mRNA translation.  相似文献   

16.
Although amyotrophic lateral sclerosis (ALS) can be associated with cognitive impairment (ALSci) as a reflection of frontotemporal lobar degeneration, the basis of this process is unknown. The observation of neuronal and extraneuronal tau deposition in ALSci in addition to a unique tau phosphorylation at Thr175 has suggested that ALSci can be associated with alterations in tau metabolism. We have examined the association between phosphorylation at Thr175 and tau fibril formation. Both soluble and insoluble tau was purified from control, patients with Alzheimer's disease (AD), ALS without cognitive impairment, and ALSci and the tendency to fibril formation assayed ex vivo using the thioflavin S fluorescence assay. The extent of fibril formation was significantly greater in tau derived from ALSci, with ALS-derived tau being intermediate between control and AD-derived tau. Using both Neuro2A and human embryonic kidney (HEK293T) cells, we expressed full-length tau constructs harboring either a pseudophosphorylation at Thr175 (Thr175-Asp-tau), inhibition of Thr175 phosphorylation (Thr175-Ala-tau) or intact tau (wild-type tau). Both tau fibril formation and cell death were significantly enhanced in the presence of Thr175-Asp-tau, regardless of the tau isoform, suggesting that phosphorylation of Thr175 is associated with tau fibril formation in ALSci.  相似文献   

17.
18.
Deng-Ke Niu  Jian-Li Cao 《FEBS letters》2010,584(16):3509-3512
In non-mammalian eukaryotes, an abnormally long 3′ untranslated region (UTR) is generally thought to be the definitive signal in the recognition of a premature termination codon (PTC) in nonsense-mediated mRNA decay (NMD). However, because the lengths of 3′ UTRs in normal mRNAs are widely distributed, “abnormally long” is hard to define. Distinct peaks of nucleosome deposition and DNA methylation have recently been found at coding region boundaries. We propose that nucleosomes and DNA methylation just upstream of a normal stop codon are ideal indicators for the position of a normal stop codon and may thus serve as signals in PTC recognition.  相似文献   

19.
The signaling adapter p62 plays a coordinating role in mediating phosphorylation and ubiquitin-dependent trafficking of interacting proteins. However, there is little known about the physiologic role of this protein in brain. Here, we report age-dependent constitutive activation of glycogen synthase kinase 3β, protein kinase B, mitogen-activated protein kinase, and c- Jun -N-terminal kinase in adult p62−/− mice resulting in hyperphosphorylated tau, neurofibrillary tangles, and neurodegeneration. Biochemical fractionation of p62−/− brain led to recovery of aggregated K63-ubiquitinated tau. Loss of p62 was manifested by increased anxiety, depression, loss of working memory, and reduced serum brain-derived neurotrophic factor levels. Our findings reveal a novel role for p62 as a chaperone that regulates tau solubility thereby preventing tau aggregation. This study provides a clear demonstration of an Alzheimer-like phenotype in a mouse model in the absence of expression of human genes carrying mutations in amyloid-beta protein precursor, presenilin, or tau. Thus, these findings provide new insight into manifestation of sporadic Alzheimer disease and the impact of obesity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号