首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
Homologous recombination is associated with the dynamic assembly and disassembly of DNA–protein complexes. Assembly of a nucleoprotein filament comprising ssDNA and the RecA homolog, Rad51, is a key step required for homology search during recombination. The budding yeast Srs2 DNA translocase is known to dismantle Rad51 filament in vitro. However, there is limited evidence to support the dismantling activity of Srs2 in vivo. Here, we show that Srs2 indeed disrupts Rad51-containing complexes from chromosomes during meiosis. Overexpression of Srs2 during the meiotic prophase impairs meiotic recombination and removes Rad51 from meiotic chromosomes. This dismantling activity is specific for Rad51, as Srs2 Overexpression does not remove Dmc1 (a meiosis-specific Rad51 homolog), Rad52 (a Rad51 mediator), or replication protein A (RPA; a single-stranded DNA-binding protein). Rather, RPA replaces Rad51 under these conditions. A mutant Srs2 lacking helicase activity cannot remove Rad51 from meiotic chromosomes. Interestingly, the Rad51-binding domain of Srs2, which is critical for Rad51-dismantling activity in vitro, is not essential for this activity in vivo. Our results suggest that a precise level of Srs2, in the form of the Srs2 translocase, is required to appropriately regulate the Rad51 nucleoprotein filament dynamics during meiosis.  相似文献   

2.
We propose permutation tests based on the pairwise distances between microarrays to compare location, variability, or equivalence of gene expression between two populations. For these tests the entire microarray or some pre-specified subset of genes is the unit of analysis. The pairwise distances only have to be computed once so the procedure is not computationally intensive despite the high dimensionality of the data. An R software package, permtest, implementing the method is freely available from the Comprehensive R Archive Network at http://cran.r-project.org.  相似文献   

3.
4.
Halomonas zhanjiangensis Chen et al. 2009 is a member of the genus Halomonas, family Halomonadaceae, class Gammaproteobacteria. Representatives of the genus Halomonas are a group of halophilic bacteria often isolated from salty environments. The type strain H. zhanjiangensis JSM 078169T was isolated from a sea urchin (Hemicentrotus pulcherrimus) collected from the South China Sea. The genome of strain JSM 078169T is the fourteenth sequenced genome in the genus Halomonas and the fifteenth in the family Halomonadaceae. The other thirteen genomes from the genus Halomonas are H. halocynthiae, H. venusta, H. alkaliphila, H. lutea, H. anticariensis, H. jeotgali, H. titanicae, H. desiderata, H. smyrnensis, H. salifodinae, H. boliviensis, H. elongata and H stevensii. Here, we describe the features of strain JSM 078169T, together with the complete genome sequence and annotation from a culture of DSM 21076T. The 4,060,520 bp long draft genome consists of 17 scaffolds with the 3,659 protein-coding and 80 RNA genes and is a part of Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project.  相似文献   

5.
Kinetochores are conserved protein complexes that bind the replicated chromosomes to the mitotic spindle and then direct their segregation. To better comprehend Saccharomyces cerevisiae kinetochore function, we dissected the phospho-regulated dynamic interaction between conserved kinetochore protein Cnn1CENP-T, the centromere region, and the Ndc80 complex through the cell cycle. Cnn1 localizes to kinetochores at basal levels from G1 through metaphase but accumulates abruptly at anaphase onset. How Cnn1 is recruited and which activities regulate its dynamic localization are unclear. We show that Cnn1 harbors two kinetochore-localization activities: a C-terminal histone-fold domain (HFD) that associates with the centromere region and a N-terminal Spc24/Spc25 interaction sequence that mediates linkage to the microtubule-binding Ndc80 complex. We demonstrate that the established Ndc80 binding site in the N terminus of Cnn1, Cnn160–84, should be extended with flanking residues, Cnn125–91, to allow near maximal binding affinity to Ndc80. Cnn1 localization was proposed to depend on Mps1 kinase activity at Cnn1–S74, based on in vitro experiments demonstrating the Cnn1Ndc80 complex interaction. We demonstrate that from G1 through metaphase, Cnn1 localizes via both its HFD and N-terminal Spc24/Spc25 interaction sequence, and deletion or mutation of either region results in anomalous Cnn1 kinetochore levels. At anaphase onset (when Mps1 activity decreases) Cnn1 becomes enriched mainly via the N-terminal Spc24/Spc25 interaction sequence. In sum, we provide the first in vivo evidence of Cnn1 preanaphase linkages with the kinetochore and enrichment of the linkages during anaphase.  相似文献   

6.
Despite the importance of clathrin-mediated endocytosis (CME) for cell biology, it is unclear if all components of the machinery have been discovered and many regulatory aspects remain poorly understood. Here, using Saccharomyces cerevisiae and a fluorescence microscopy screening approach we identify previously unknown regulatory factors of the endocytic machinery. We further studied the top scoring protein identified in the screen, Ubx3, a member of the conserved ubiquitin regulatory X (UBX) protein family. In vivo and in vitro approaches demonstrate that Ubx3 is a new coat component. Ubx3-GFP has typical endocytic coat protein dynamics with a patch lifetime of 45 ± 3 sec. Ubx3 contains a W-box that mediates physical interaction with clathrin and Ubx3-GFP patch lifetime depends on clathrin. Deletion of the UBX3 gene caused defects in the uptake of Lucifer Yellow and the methionine transporter Mup1 demonstrating that Ubx3 is needed for efficient endocytosis. Further, the UBX domain is required both for localization and function of Ubx3 at endocytic sites. Mechanistically, Ubx3 regulates dynamics and patch lifetime of the early arriving protein Ede1 but not later arriving coat proteins or actin assembly. Conversely, Ede1 regulates the patch lifetime of Ubx3. Ubx3 likely regulates CME via the AAA-ATPase Cdc48, a ubiquitin-editing complex. Our results uncovered new components of the CME machinery that regulate this fundamental process.  相似文献   

7.
8.
Cdk1 activity drives both mitotic entry and the metaphase-to-anaphase transition in all eukaryotes. The kinase Wee1 and the phosphatase Cdc25 regulate the mitotic activity of Cdk1 by the reversible phosphorylation of a conserved tyrosine residue. Mutation of cdc25 in Schizosaccharomyces pombe blocks Cdk1 dephosphorylation and causes cell cycle arrest. In contrast, deletion of MIH1, the cdc25 homolog in Saccharomyces cerevisiae, is viable. Although Cdk1-Y19 phosphorylation is elevated during mitosis in mih1∆ cells, Cdk1 is dephosphorylated as cells progress into G1, suggesting that additional phosphatases regulate Cdk1 dephosphorylation. Here we show that the phosphatase Ptp1 also regulates Cdk1 dephosphorylation in vivo and can directly dephosphorylate Cdk1 in vitro. Using a novel in vivo phosphatase assay, we also show that PP2A bound to Rts1, the budding yeast B56-regulatory subunit, regulates dephosphorylation of Cdk1 independently of a function regulating Swe1, Mih1, or Ptp1, suggesting that PP2ARts1 either directly dephosphorylates Cdk1-Y19 or regulates an unidentified phosphatase.  相似文献   

9.
Specific selection pressures often lead to specifically mutated genomes. The open source software SeqFeatR has been developed to identify associations between mutation patterns in biological sequences and specific selection pressures (“features”). For instance, SeqFeatR has been used to discover in viral protein sequences new T cell epitopes for hosts of given HLA types. SeqFeatR supports frequentist and Bayesian methods for the discovery of statistical sequence-feature associations. Moreover, it offers novel ways to visualize results of the statistical analyses and to relate them to further properties. In this article we demonstrate various functions of SeqFeatR with real data. The most frequently used set of functions is also provided by a web server. SeqFeatR is implemented as R package and freely available from the R archive CRAN (http://cran.r-project.org/web/packages/SeqFeatR/index.html). The package includes a tutorial vignette. The software is distributed under the GNU General Public License (version 3 or later). The web server URL is https://seqfeatr.zmb.uni-due.de.  相似文献   

10.
The Saccharomyces cerevisiae type 2C protein phosphatase Ptc1 is required for a wide variety of cellular functions, although only a few cellular targets have been identified. A genetic screen in search of mutations in protein kinase–encoding genes able to suppress multiple phenotypic traits caused by the ptc1 deletion yielded a single gene, MKK1, coding for a MAPK kinase (MAPKK) known to activate the cell-wall integrity (CWI) Slt2 MAPK. In contrast, mutation of the MKK1 paralog, MKK2, had a less significant effect. Deletion of MKK1 abolished the increased phosphorylation of Slt2 induced by the absence of Ptc1 both under basal and CWI pathway stimulatory conditions. We demonstrate that Ptc1 acts at the level of the MAPKKs of the CWI pathway, but only the Mkk1 kinase activity is essential for ptc1 mutants to display high Slt2 activation. We also show that Ptc1 is able to dephosphorylate Mkk1 in vitro. Our results reveal the preeminent role of Mkk1 in signaling through the CWI pathway and strongly suggest that hyperactivation of Slt2 caused by upregulation of Mkk1 is at the basis of most of the phenotypic defects associated with lack of Ptc1 function.  相似文献   

11.
Directional export of messenger RNA (mRNA) protein particles (mRNPs) through nuclear pore complexes (NPCs) requires multiple factors. In Saccharomyces cerevisiae, the NPC proteins Nup159 and Nup42 are asymmetrically localized to the cytoplasmic face and have distinct functional domains: a phenylalanine-glycine (FG) repeat domain that docks mRNP transport receptors and domains that bind the DEAD-box ATPase Dbp5 and its activating cofactor Gle1, respectively. We speculated that the Nup42 and Nup159 FG domains play a role in positioning mRNPs for the terminal mRNP-remodeling steps carried out by Dbp5. Here we find that deletion (Δ) of both the Nup42 and Nup159 FG domains results in a cold-sensitive poly(A)+ mRNA export defect. The nup42ΔFG nup159ΔFG mutant also has synthetic lethal genetic interactions with dbp5 and gle1 mutants. RNA cross-linking experiments further indicate that the nup42ΔFG nup159ΔFG mutant has a reduced capacity for mRNP remodeling during export. To further analyze the role of these FG domains, we replaced the Nup159 or Nup42 FG domains with FG domains from other Nups. These FG “swaps” demonstrate that only certain FG domains are functional at the NPC cytoplasmic face. Strikingly, fusing the Nup42 FG domain to the carboxy-terminus of Gle1 bypasses the need for the endogenous Nup42 FG domain, highlighting the importance of proximal positioning for these factors. We conclude that the Nup42 and Nup159 FG domains target the mRNP to Gle1 and Dbp5 for mRNP remodeling at the NPC. Moreover, these results provide key evidence that character and context play a direct role in FG domain function and mRNA export.  相似文献   

12.
13.
Mycobacterium simiae is a non-tuberculosis mycobacterium causing pulmonary infections in both immunocompetent and imunocompromized patients. We announce the draft genome sequence of M. simiae DSM 44165T. The 5,782,968-bp long genome with 65.15% GC content (one chromosome, no plasmid) contains 5,727 open reading frames (33% with unknown function and 11 ORFs sizing more than 5000 -bp), three rRNA operons, 52 tRNA, one 66-bp tmRNA matching with tmRNA tags from Mycobacterium avium, Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium microti, Mycobacterium marinum, and Mycobacterium africanum and 389 DNA repetitive sequences. Comparing ORFs and size distribution between M. simiae and five other Mycobacterium species M. simiae clustered with M. abscessus and M. smegmatis. A 40-kb prophage was predicted in addition to two prophage-like elements, 7-kb and 18-kb in size, but no mycobacteriophage was seen after the observation of 106 M. simiae cells. Fifteen putative CRISPRs were found. Three genes were predicted to encode resistance to aminoglycosides, betalactams and macrolide-lincosamide-streptogramin B. A total of 163 CAZYmes were annotated. M. simiae contains ESX-1 to ESX-5 genes encoding for a type-VII secretion system. Availability of the genome sequence may help depict the unique properties of this environmental, opportunistic pathogen.  相似文献   

14.
15.
Telomere length is tightly regulated in cells that express telomerase. The Saccharomyces cerevisiae Ku heterodimer, a DNA end-binding complex, positively regulates telomere length in a telomerase-dependent manner. Ku associates with the telomerase RNA subunit TLC1, and this association is required for TLC1 nuclear retention. Ku–TLC1 interaction also impacts the cell-cycle-regulated association of the telomerase catalytic subunit Est2 to telomeres. The promotion of TLC1 nuclear localization and Est2 recruitment have been proposed to be the principal role of Ku in telomere length maintenance, but neither model has been directly tested. Here we study the impact of forced recruitment of Est2 to telomeres on telomere length in the absence of Ku’s ability to bind TLC1 or DNA ends. We show that tethering Est2 to telomeres does not promote efficient telomere elongation in the absence of Ku–TLC1 interaction or DNA end binding. Moreover, restoration of TLC1 nuclear localization, even when combined with Est2 recruitment, does not bypass the role of Ku. In contrast, forced recruitment of Est1, which has roles in telomerase recruitment and activation, to telomeres promotes efficient and progressive telomere elongation in the absence of Ku–TLC1 interaction, Ku DNA end binding, or Ku altogether. Ku associates with Est1 and Est2 in a TLC1-dependent manner and enhances Est1 recruitment to telomeres independently of Est2. Together, our results unexpectedly demonstrate that the principal role of Ku in telomere length maintenance is to promote the association of Est1 with telomeres, which may in turn allow for efficient recruitment and activation of the telomerase holoenzyme.  相似文献   

16.
The nuclear envelope in Saccharomyces cerevisiae harbors two essential macromolecular protein assemblies: the nuclear pore complexes (NPCs) that enable nucleocytoplasmic transport, and the spindle pole bodies (SPBs) that mediate chromosome segregation. Previously, based on metazoan and budding yeast studies, we reported that reticulons and Yop1/DP1 play a role in the early steps of de novo NPC assembly. Here, we examined if Rtn1 and Yop1 are required for SPB function in S. cerevisiae. Electron microscopy of rtn1Δ yop1Δ cells revealed lobular abnormalities in SPB structure. Using an assay that monitors lateral expansion of the SPB central layer, we found that rtn1Δ yop1Δ SPBs had decreased connections to the NE compared to wild type, suggesting that SPBs are less stable in the NE. Furthermore, large budded rtn1Δ yop1Δ cells exhibited a high incidence of short mitotic spindles, which were frequently misoriented with respect to the mother–daughter axis. This correlated with cytoplasmic microtubule defects. We found that overexpression of the SPB insertion factors NDC1, MPS2, or BBP1 rescued the SPB defects observed in rtn1Δ yop1Δ cells. However, only overexpression of NDC1, which is also required for NPC biogenesis, rescued both the SPB and NPC associated defects. Rtn1 and Yop1 also physically interacted with Ndc1 and other NPC membrane proteins. We propose that NPC and SPB biogenesis are altered in cells lacking Rtn1 and Yop1 due to competition between these complexes for Ndc1, an essential common component of both NPCs and SPBs.  相似文献   

17.
The oocytes of most sexually reproducing animals arrest in meiotic prophase I. Oocyte growth, which occurs during this period of arrest, enables oocytes to acquire the cytoplasmic components needed to produce healthy progeny and to gain competence to complete meiosis. In the nematode Caenorhabditis elegans, the major sperm protein hormone promotes meiotic resumption (also called meiotic maturation) and the cytoplasmic flows that drive oocyte growth. Prior work established that two related TIS11 zinc-finger RNA-binding proteins, OMA-1 and OMA-2, are redundantly required for normal oocyte growth and meiotic maturation. We affinity purified OMA-1 and identified associated mRNAs and proteins using genome-wide expression data and mass spectrometry, respectively. As a class, mRNAs enriched in OMA-1 ribonucleoprotein particles (OMA RNPs) have reproductive functions. Several of these mRNAs were tested and found to be targets of OMA-1/2-mediated translational repression, dependent on sequences in their 3′-untranslated regions (3′-UTRs). Consistent with a major role for OMA-1 and OMA-2 in regulating translation, OMA-1-associated proteins include translational repressors and activators, and some of these proteins bind directly to OMA-1 in yeast two-hybrid assays, including OMA-2. We show that the highly conserved TRIM-NHL protein LIN-41 is an OMA-1-associated protein, which also represses the translation of several OMA-1/2 target mRNAs. In the accompanying article in this issue, we show that LIN-41 prevents meiotic maturation and promotes oocyte growth in opposition to OMA-1/2. Taken together, these data support a model in which the conserved regulators of mRNA translation LIN-41 and OMA-1/2 coordinately control oocyte growth and the proper spatial and temporal execution of the meiotic maturation decision.  相似文献   

18.
Approximate Bayesian computation (ABC) constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection. ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences (e.g., in population genetics, ecology, epidemiology, and systems biology).
This is a “Topic Page” article for PLOS Computational Biology.
  相似文献   

19.
20.
Staphylococcus cohnii subsp. cohnii belongs to the family Staphylococcaceae in the order Bacillales, class Bacilli and phylum Firmicutes. The increasing relevance of S. cohnii to human health prompted us to determine the genomic sequence of Staphylococcus cohnii subsp. cohnii strain hu-01, a multidrug-resistant isolate from a hospital in China. Here we describe the features of S. cohnii subsp. cohnii strain hu-01, together with the genome sequence and its annotation. This is the first genome sequence of the species Staphylococcus cohnii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号