首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
污染土壤微生物群落结构多样性及功能多样性测定方法   总被引:18,自引:0,他引:18  
陈承利  廖敏  曾路生 《生态学报》2006,26(10):3404-3412
土壤微生物在促进土壤质量和植物健康方面发挥着重要的作用,土壤微生物群落结构和组成的多样性及其变化在一定程度上反映了土壤质量.为了更好地了解土壤健康状况,非常有必要发展有效的方法来研究污染土壤微生物的多样性、分布以及行为等.回顾了近年来国内外污染土壤微生物群落结构多样性及功能多样性的测定方法,包括生物化学技术和分子生物学技术,现将它们的原理、优缺点、实用性及其发展动态作一阐述,同时指出结合这两种技术可为微生物群落分析提供一个更全面的、精确的方法.  相似文献   

3.
Molecular community analysis of microbial diversity   总被引:11,自引:0,他引:11  
New technologies that avoid the need for either gene amplification (e.g. microarrays) or nucleic acid extraction (e.g. in situ PCR) have recently been implemented in microbial ecology. Together with new approaches for culturing microorganisms and an increased understanding of the biases of molecular methods, these techniques form the most exciting advances in this field during the past year.  相似文献   

4.
One of the more common features of serpins is the ability to bind various ligands. Ligand binding can occur so that the inhibitory properties of the serpin are regulated, so that the serpin can be localized, or to produce or modulate some other biological function of the serpin. Ligands known to affect serpin biologic activity include glycosaminoglycans such as heparin, heparan sulfate and dermatan sulfate, DNA, extracellular matrix proteins such as vitronectin and collagen, and small organic molecule hormones. Many different biochemical and biophysical techniques in conjunction with molecular biology and cell biology approaches have been used to study the binding of various ligands to serpins and to assess the influence of this binding on activity and structure. We summarize here the different approaches that have been used to identify serpin ligands and the many methods that have been used to characterize the interactions of these ligands with their cognate serpins.  相似文献   

5.
6.
The generation of airborne microorganisms from concentrated animal-feeding operations (CAFOs) is a concern from a human and animal health perspective. To better understand the airborne microorganisms found in these environments, a number of collection and analytical techniques have been utilized and will be discussed in this review. The most commonly used bioaerosol collection method is the liquid impingement format, which is suitable with a number of culture-based and non-culture molecular-based approaches, such as polymerase chain reaction. However, the vast majority of airborne microorganism studies conducted at CAFOs utilize culture-based analyses. Because of the limitations often associated with culture-based analyses, we focused our discussion on the application of molecular-based techniques to identify and/or quantify microorganisms, as they have promising application in bioaerosol research. The ability to rapidly characterize airborne microorganisms will help to ensure protection of public and environmental health. The use or mention of any commercial products does not imply any endorsement of that product by either the authors or the US Department of Agriculture.  相似文献   

7.
Bacteria account for a major proportion of Earth’s biological diversity. They play essential roles in quite diverse environments and there has been an increasing interest in bacterial biodiversity. Research using novel and efficient tools to identify and characterize bacterial communities has been the key for elucidating biological activities with potential for industrial application. The current approach used for defining bacterial species is based on phenotypic and genomic properties. Traditional and novel DNA-based molecular methods are improving our knowledge of bacterial diversity in nature. Advances in molecular biology have been important for studies of diversity, considerably improving our knowledge of morphological, physiological, and ecological features of bacterial taxa. DNA–DNA hybridization, which has been used for many years, is still considered the golden standard for bacteria species identification. PCR-based methods investigating 16S rRNA gene sequences, and other approaches, such as the metagenome, have been used to study the physiology and diversity of bacteria and to identify novel genes with potential pharmaceutical and other biotechnological applications. We examined the advantages and limitations of molecular methods currently used to analyze bacterial diversity; these are mainly based on the 16S rRNA gene. These methods have allowed us to examine microorganisms that cannot be cultivated by routine methods and have also been useful for phylogenetic studies. We also considered the importance of improvements in microbe culture techniques and how we can combine different methods to allow a more appropriate assessment of bacterial diversity and to determine their real potential for industrial applications.  相似文献   

8.
Advances in analytical and diagnostic assays based on novel nucleic acid analyses techniques have revolutionized the application of molecular differentiation of microorganisms. Phenotypic typing schemes are now broadly supplemented by new genotyping methods which allow a more refined and detailed differentiation of closely related microorganisms, bacterial strains, isolates and pathogens on the DNA level. Bio-, sero- and phagetyping, antibiotic susceptibility tests, immunoblotting as well as multilocus enzyme- or polyacrylamide gel electrophoresis are now supported by the analysis of plasmid or chromosomal DNA restriction profiles, ribotyping, pulsed-field gel electrophoresis and polymerase- or ligase-chain reaction-based methods or direct sequencing technique to differentiate microorganisms. Some of these molecular techniques are also used in the field of virology to analyse and differentiate closely related sub- or genotypes. Few examples for the analysis and investigation of these usually small genomes will also be given.  相似文献   

9.
Traditional cultivation-based methods to quantify microbial abundance are not suitable for analyses of microbial communities in environmental or medical samples, which consist mainly of uncultured microorganisms. Recently, different cultivation-independent quantification approaches have been developed to overcome this problem. Some of these techniques use specific fluorescence markers, for example ribosomal ribonucleic acid targeted oligonucleotide probes, to label the respective target organisms. Subsequently, the detected cells are visualized by fluorescence microscopy and are quantified by direct visual cell counting or by digital image analysis. This article provides an overview of these methods and some of their applications with emphasis on (semi-)automated image analysis solutions.  相似文献   

10.
《Process Biochemistry》2007,42(2):119-133
Identification of microorganisms by conventional methods requires the isolation of pure cultures followed by laborious characterization experiments. These procedures are therefore inadequate for study of the biodiversity of a natural or engineered ecosystem. A new set of molecular techniques developed during the 1990s revolutionized microbial ecology research. Among these techniques, cloning and the creation of a gene library, denaturant gradient gel electrophoresis (DGGE) and fluorescent in situ hybridization with DNA probes (FISH) stand out. Cloning provides very precise taxonomical information, but is time consuming and requires specialized personnel and so its introduction in wastewater treatment has been slow. DGGE is a rapid and simple method that provides characteristic band patterns for different samples, allowing quick sample profiling, while retaining the possibility of a more thorough genetic analysis by sequencing of particular bands. FISH makes possible to identify microorganisms at any desired taxonomical level, depending on the specificity of the probe used. It is the only quantitative molecular biology technique, although quantification is either complex or tedious and subjective. Combination with a confocal laser-scanning microscope allows the visualization of three-dimensional microbial structures (granules, biofilms). The methods discussed have deepened our understanding of the microbiology of biological wastewater treatment. PCR-based methods (cloning and DGGE) have proved suitable for identifying the microorganisms that form the sludge. Both DGGE and FISH have been extensively employed. FISH is currently being used for elucidation of the composition, quantification and distribution of different bacterial groups in granules and biofilms, as well as their structure and architecture.  相似文献   

11.
分子生物学方法在环境微生物生态学中的应用研究进展   总被引:8,自引:0,他引:8  
姬洪飞  王颖 《生态学报》2016,36(24):8234-8243
随着分子生物学方法的不断发展和改进,微生物在生态系统中的作用被更好的挖掘出来。目前快速发展的先进的分子生物学技术,已经开始应用于分析环境微生物的多样性、微生物的生物地理学及微生物对气候变化的响应等。一般环境微生物的研究目标主要有3个,即确定微生物的种类和多样性、微生物的功能或潜在作用及在特定时间点活跃的微生物等。然而,现有微生物的研究方法复杂多样,容易给研究者在方法的选择上带来困惑。将从微生物的多样性和功能研究两个方面介绍和分析相应的分子生物学方法,尤其是近年来快速发展的高通量测序、宏组学和单细胞水平研究方法(如纳米二次离子质谱与荧光原位杂交相结合的方法)等新技术及其应用情况,以期为研究者选择合适的研究方法进行环境微生物的研究提供依据。  相似文献   

12.
Bacterial names are continually being changed in order to more adequately describe natural groups (the units of microbial diversity) and their relationships. The problems in Klebsiella taxonomy are illustrative and common to other bacterial genera. Like other bacteria, Klebsiella spp. were isolated long ago, when methods to identify and classify bacteria were limited. However, recently developed molecular approaches have led to taxonomical revisions in several cases or to sound proposals of novel species.  相似文献   

13.
Among arthropod diseases affecting animals, larval infections - myiases - of domestic and wild animals have been considered important since ancient times. Besides the significant economic losses to livestock worldwide, myiasis-causing larvae have attracted the attention of scientists because some parasitise humans and are of interest in forensic entomology. In the past two decades, the biology, epidemiology, immunology, immunodiagnosis and control methods of myiasis-causing larvae have been focused on and more recently the number of molecular studies have also begun to increase. The 'new technologies' (i.e. molecular biology) are being used to study taxonomy, phylogenesis, molecular identification, diagnosis (recombinant antigens) and vaccination strategies. In particular, more in depth molecular studies have now been performed on Sarcophagidae, Calliphoridae and flies of the Oestridae sister group. This review discusses the most topical issues and recent studies on myiasis-causing larvae using molecular approaches. In the first part, PCR-based techniques and the genes that have already been analysed, or are potentially useful for the molecular phylogenesis and identification of myiasis-causing larvae, are described. The second section deals with the more recent advances concerning taxonomy, phylogenetics, population studies, molecular identification, diagnosis and vaccination.  相似文献   

14.
Modern molecular techniques have revealed an extraordinary diversity of microorganisms, most of which are as yet uncharacterized. This poses a major challenge to microbial ecologists: how can one compare the microbial diversity of different environments when the vast majority of microbial taxa are usually unknown? Three statistical approaches developed by ecologists and evolutionary biologists--parametric estimation, nonparametric estimation and community phylogenetics--are proving to be promising tools to meet this challenge. The combination of these tools with molecular biology techniques allow the rigorous estimation and comparison of microbial diversity in different environments.  相似文献   

15.
The recently introduced term ‘integrative taxonomy’ refers to taxonomy that integrates all available data sources to frame species limits. We survey current taxonomic methods available to delimit species that integrate a variety of data, including molecular and morphological characters. A literature review of empirical studies using the term ‘integrative taxonomy’ assessed the kinds of data being used to frame species limits, and methods of integration. Almost all studies are qualitative and comparative – we are a long way from a repeatable, quantitative method of truly ‘integrative taxonomy’. The usual methods for integrating data in phylogenetic and population genetic paradigms are not appropriate for integrative taxonomy, either because of the diverse range of data used or because of the special challenges that arise when working at the species/population boundary. We identify two challenges that, if met, will facilitate the development of a more complete toolkit and a more robust research programme in integrative taxonomy using species tree approaches. We propose the term ‘iterative taxonomy’ for current practice that treats species boundaries as hypotheses to be tested with new evidence. A search for biological or evolutionary explanations for discordant evidence can be used to distinguish between competing species boundary hypotheses. We identify two recent empirical examples that use the process of iterative taxonomy.  相似文献   

16.
Recent efforts of researchers to elucidate the molecular mechanisms of biological systems have been revolutionized greatly with the use of high throughput and cost-effective techniques such as next generation sequencing (NGS). Application of NGS to microbial genomics is not just limited to predict the prevalence of microorganisms in food samples but also to elucidate the molecular basis of how microorganisms respond to different food-associated conditions, which in turn offers tremendous opportunities to predict and control the growth and survival of desirable or undesirable microorganisms in food. Concurrently, NGS has facilitated the development of new genome-assisted approaches for correlating genotype and phenotype. The aim of this review is to provide a snapshot of the various possibilities that these new technologies are opening up in area of food microbiology, focusing the discussion mainly on lactic acid bacteria and yeasts associated with fermented food. The contribution of NGS to a system level understanding of food microorganisms is also discussed.  相似文献   

17.
Until recently, our understanding of microbial community development in soil ecosystems exposed to different inorganic and organic pollutants has been limited to culturable microorganisms because of the techniques available. The discovery that most soil microorganisms are non-culturable but potentially viable and metabolically active accelerated the application of different culture-independent methods for structural diversity assessments of the microbial community. This review examines the results of recent studies on the impact of heavy metals and organic pollutants on the diversity of the microflora obtained with methods based on analyses of signature biomarkers such as nucleic acids and fatty acids. The application of these techniques allowed researchers to pinpoint reduction of microbial diversity in contaminated soil, and significant shifts in the community structure, leading to the dominance of only a few populations (species) and the disappearance of others, some of which were never isolated by conventional methods (e.g. an increase in Acidobacterium or a decrease in terrestrial non-thermophilic Crenarchaeota). Although the new techniques are not free from limitations, they allow the monitoring of the virtual impact of stressors on soil microorganisms and the direction of resuscitation of the microbial community during natural or induced bioremediation, especially when using combined approaches.  相似文献   

18.
《Anaerobe》2000,6(1):39-57
The taxonomy of spirochetes has improved considerably over the last few years. Even non-cultivable spirochetes have been classified and identified and highly discriminating analytical methods have been used to distinguish these unique organisms. The present article reviews major characteristics and techniques that have been applied in recent molecular taxonomy and chemotaxonomy of spirochetes. These comprise cellular lipids, carbohydrates, peptidoglycan, enzymes, cell proteins, cytoplasmic fibrils, metabolites, genome size, structure and base composition, restriction endonuclease analysis, restriction fragment length polymorphism, multilocus enzyme electrophoresis, pulsed-field gel electrophoresis, DNA-DNA hybridization, arbitrarily primed polymerase chain reaction/randomly amplified polymorphic DNA fingerprinting, ribosomal (r) RNA cataloguing and sequencing, characterization of intergenic spacer regions of rRNA genes, ospA, lipoprotein and flagellin gene sequencing, and rRNA gene organization. Characteristics and techniques such as those listed above have contributed to the recognition of new spirochetal genera and species and have made spirochetal taxonomy polyphasic. Despite these improvements, significant reservoirs of hitherto unrecognized spirochetal diversity probably still exist.  相似文献   

19.
Combinations of microscopy and molecular techniques to detect, identify and characterize microorganisms in environmental and medical samples are widely used in microbial ecology and biofilm research. The scope of these methods, which include fluorescence in situ hybridization (FISH) with rRNA-targeted probes, is extended by digital image analysis routines that extract from micrographs important quantitative data. Here we introduce daime (digital image analysis in microbial ecology), a new computer program integrating 2-D and 3-D image analysis and visualization functionality, which has previously not been available in a single open-source software package. For example, daime automatically finds 2-D and 3-D objects in images and confocal image stacks, and offers special functions for quantifying microbial populations and evaluating new FISH probes. A novel feature is the quantification of spatial localization patterns of microorganisms in complex samples like biofilms. In combination with '3D-FISH', which preserves the 3-D structure of samples, this stereological technique was applied in a proof of principle experiment on activated sludge and provided quantitative evidence that functionally linked ammonia and nitrite oxidizers cluster together in their habitat. This image analysis method complements recent molecular techniques for analysing structure-function relationships in microbial communities and will help to characterize symbiotic interactions among microorganisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号