首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exosomes, small extracellular vesicles ranging from 30 to 150 nm, are secreted by various cell types, including tumour cells. Recently, microRNAs (miRNAs) were identified to be encapsulated and hence protected from degradation within exosomes. These exosomal miRNAs can be horizontally transferred to target cells, in which they subsequently modulate biological processes. Increasing evidence indicates that exosomal miRNAs play a critical role in modifying the microenvironment of lung cancers, possibly facilitating progression, invasion, angiogenesis, metastasis and drug resistance. In this review, we summarize the novel findings on exosomal miRNA functions during lung cancer initiation and progression. In addition, we highlight their potential role and challenges as biomarkers in lung cancer diagnosis, prognosis and drug resistance and as therapeutic agents.  相似文献   

2.
3.
Anti-Dll4 therapy: can we block tumour growth by increasing angiogenesis?   总被引:1,自引:0,他引:1  
Since the early 1970s, the dogma postulating that blocking tumour angiogenesis can inhibit tumour growth has been accepted widely and has resulted in the generation of a variety of successful anti-angiogenic therapies. More recently, new signalling pathways, such as the Dll4-Notch signalling pathway, have been shown to regulate angiogenesis during development. In pathological conditions, such as cancer, Dll4 is up-regulated strongly in the tumour vasculature. Based on this expression pattern, different molecules have been generated to block Dll4 signalling. Unexpectedly, these blocking agents inhibited tumour growth in vivo by triggering excessive but nonfunctional angiogenesis. Altogether, these molecules constitute a new category of pro-angiogenic yet anticancer agents and offer an exciting alternative to previously described vascular targeting molecules.  相似文献   

4.
Ovarian cancer, one of the malignant gynaecological tumours with the highest mortality rate among female reproductive system, is prone to metastasis, recurrence and chemotherapy resistance, causing a poor prognosis. Exosomes can regulate the epithelial-mesenchymal plasticity of tumour cells, remodel surrounding tumour microenvironment, and affect tumour cell proliferation, invasion and metastasis. However, the function and mechanism of exosomes in the intraperitoneal implantation of ovarian cancer remain unclear. In this study, exosomal annexin A2 (ANXA2) derived from ovarian cancer cells was co-cultured with human peritoneal mesothelial (HMrSV5) cells; functional experiments were conducted to explore the effects of exosomal ANXA2 on the biological behaviour of HMrSV5 and the related mechanisms. This study showed that ANXA2 in ovarian cancer cells can be transferred to HMrSV5 cells through exosomes, exosomal ANXA2 can not only promote the migration, invasion and apoptosis of HMrSV5 cells, but also regulates morphological changes and fibrosis of HMrSV5 cells. Furthermore, ANXA2 promotes the mesothelial-mesenchymal transition (MMT) and degradation of the extracellular matrix of HMrSV5 cells through PI3K/AKT/mTOR pathway, finally affects pre-metastasis microenvironment of ovarian cancer, which provides a new theoretical basis for the mechanism of intraperitoneal implantation and metastasis of ovarian cancer.  相似文献   

5.
microRNAs (miRNAs) are of importance to chronic heart failure (CHF). However, the relevance of the exosomal miRNAs produced during CHF remains unknown. Our purpose here was to examine the relevance of exosomal microRNA-1246 (miR-1246) released from human umbilical cord mesenchymal stem cell (hucMSC) during CHF and the mechanism of action. Cardiac function, myocardial infarction area, apoptosis, and angiogenesis were all evaluated in a CHF rat model following treatment with hucMSC-derived exosomes (hucMSC-Exos). H9C2 and human umbilical vascular endothelial cells (HUVECs) were subjected to oxygen and glucose deprivation and exosome treatment to quantify the cell proliferation and apoptosis in H9C2 cells and the tube formation capacity of the HUVECs. A dual-luciferase activity reporter assay was conducted to validate the interaction between miR-1246 and serine protease 23 (PRSS23). HucMSCs treatment led to a reduction in H9C2 apoptosis and an increase in HUVEC angiogenesis, which were mitigated when hucMSCs were treated with a miR-1246 inhibitor. We also confirmed that PRSS23 is a putative target of miR-1246 and that miR-1246 attenuated hypoxia-induced myocardial tissue damage by targeting PRSS23 and inhibiting the activation of the Snail/alpha-smooth muscle actin signaling. Our findings suggest that exosomal miR-1246 from hucMSCs protects the heart from failure by targeting PRSS23.  相似文献   

6.
Tie2, an endothelial cell-specific receptor kinase, has an important role in tumour angiogenesis. In an attempt to identify peptides that specifically interact with and block the Tie2 pathway, a phage-displayed peptide library was screened on a recombinant Tie2 receptor. One peptide, NLLMAAS, completely abolished the binding to Tie2 of both angiopoietin 2 and angiopoietin 1 (Ang1). We further show that NLLMAAS specifically suppresses both Ang1-induced ERK activity and migration in human umbilical endothelial cells. Moreover, in vivo, this peptide inhibits angiogenesis in the chick chorioallantoic membrane assay. NLLMAAS is the first peptide described to interact with Tie2. Our results demonstrate that it is an efficient and specific antagonist of the binding of Tie2 ligands, and suggest that this peptide or its derivates may have potential applications in the treatment of angiogenesis diseases. It also represents a potent tool to dissect the molecular mechanisms involved in the Tie2 pathway.  相似文献   

7.
Polycystic ovary syndrome (PCOS) is a heterogeneous reproductive disease, characterized by increased ovarian androgen biosynthesis, chronic anovulation and polycystic ovaries. The objective of this study was to identify the altered miRNA expression profiles in follicular fluid derived exosomes isolated from PCOS patients and to investigate the molecular functions of exosomal miR-424-5p. Herein, small RNA sequencing showed that twenty-five miRNAs were differentially expressed between control and PCOS group. The alterations in the miRNA profile were related to the endocrine resistance, cell growth and proliferation, cellular senescence and insulin signaling pathway. Among these differentially expressed miRNAs, we found that the expression of miR-424-5p was significantly decreased in PCOS exosomes and primary granulosa cells (GCs). Exosome-enriched miR-424-5p significantly promoted GCs senescence and suppressed cell proliferation. Similar to the results obtained in the cells transfected with miR-424-5p mimic, miR-424-5p mimic significantly decreased cell proliferation ability and induced senescence, but treatment with miR-424-5p inhibitor got the opposite results. In addition, cell division cycle associated 4 (CDCA4) gene displayed an inverse expression pattern to those of miR-424-5p, was identified as the direct target of miR-424-5p. Overexpression of CDCA4 reversed the effects of exosomal miR-424-5p on GCs via activation of Rb/E2F1 signaling pathway. These results demonstrate that exosomal miR-424-5p inhibits GCs proliferation and induces cellular senescence in PCOS through blocking CDCA4-mediated Rb/E2F1 signaling. Our findings provide new information on abnormal follicular development in PCOS.  相似文献   

8.
Cancer-secreted exosomes are critical mediators of cancer-host crosstalk. In the present study, we showed the delivery of miR-21-5p from colorectal cancer (CRC) cells to endothelial cells via exosomes increased the amount of miR-21-5p in recipient cells. MiR-21-5p suppressed Krev interaction trapped protein 1 (KRIT1) in recipient HUVECs and subsequently activated β-catenin signaling pathway and increased their downstream targets VEGFa and Ccnd1, which consequently promoted angiogenesis and vascular permeability in CRC. A strong inverse correlation between miR-21-5p and KRIT1 expression levels was observed in CRC-adjacent vessels. Furthermore, miR-21-5p expression in circulating exosomes was markedly higher in CRC patients than in healthy donors. Thus, our data suggest that exosomal miR-21-5p is involved in angiogenesis and vascular permeability in CRC and may be used as a potential new therapeutic target.Subject terms: Cancer microenvironment, Colon cancer  相似文献   

9.
Bone marrow-derived cells include haematopoietic cell lineages and the recently described endothelial progenitor cells (EPCs). It has been recently emphasised that these marrow-derived cells contribute to tumour angiogenesis, and different mechanisms have been proposed that account for this activity. Whereas haematopoietic cells may promote tumour angiogenesis through the release of proangiogenic factors or by creating permissive conditions in the tumour microenvironment that favour the growth of locally derived blood vessels ("paracrine" role), endothelial progenitors are thought to directly incorporate into nascent blood vessels as bona fide endothelial cells ("building block" role). The relative contribution of these distinct pathways to tumour angiogenesis is the subject of intense investigation and debate.  相似文献   

10.
Tumor-derived exosomes (TEXs) contain enriched miRNAs, and exosomal miRNAs can affect tumor growth, including cell proliferation, metastasis, and drug resistance through cell-to-cell communication. We investigated the role of exosomal miR-1260b derived from non-small cell lung cancer (NSCLC) in tumor progression. Exosomal miR-1260b induced angiogenesis by targeting homeodomain-interacting protein kinase-2 (HIPK2) in human umbilical vein endothelial cells (HUVECs). Furthermore, exosomal miR-1260b or suppression of HIPK2 led to enhanced cellular mobility and cisplatin resistance in NSCLC cells. In patients with NSCLC, the level of HIPK2 was significantly lower in tumor tissues than in normal lung tissues, while that of miR-1260b was higher in tumor tissues. HIPK2 and miR-1260b expression showed an inverse correlation, and this correlation was strong in distant metastasis. Finally, the expression level of exosomal miR-1260b in plasma was higher in patients with NSCLC than in healthy individuals, and higher levels of exosomal miR-1260b were associated with high-grade disease, metastasis, and poor survival. In conclusion, exosomal miR-1260b can promote angiogenesis in HUVECs and metastasis of NSCLC by regulating HIPK2 and may serve as a prognostic marker for lung cancers.Subject terms: Non-small-cell lung cancer, Metastasis, miRNAs  相似文献   

11.
CD82 and CD9 are tetraspanin membrane proteins that can function as suppressors of tumor metastasis. Expression of CD9 and CD82 in transfected cells strongly suppresses β-catenin–mediated Wnt signaling activity and induces a significant decrease in β-catenin protein levels. Inhibition of Wnt/β-catenin signaling is independent of glycogen synthase kinase-3β and of the proteasome- and lysosome-mediated protein degradation pathways. CD82 and CD9 expression induces β-catenin export via exosomes, which is blocked by a sphingomyelinase inhibitor, GW4869. CD82 fails to induce exosome release of β-catenin in cells that express low levels of E-cadherin. Exosome release from dendritic cells generated from CD9 knockout mice is reduced compared with that from wild-type dendritic cells. These results suggest that CD82 and CD9 down-regulate the Wnt signaling pathway through the exosomal discharge of β-catenin. Thus, exosomal packaging and release of cytosolic proteins can modulate the activity of cellular signaling pathways.  相似文献   

12.
ABSTRACT: BACKGROUND: The epidermal growth factor receptor (EGFR) signaling pathway and angiogenesis in brain cancer act as an engine for tumor initiation, expansion and response to therapy. Since the existing literature does not have any models that investigate the impact of both angiogenesis and molecular signaling pathways on treatment, we propose a novel multi-scale, agent-based computational model that includes both angiogenesis and EGFR modules to study the response of brain cancer under tyrosine kinase inhibitors (TKIs) treatment. RESULTS: The novel angiogenesis module integrated into the agent-based tumor model is based on a set of reaction--diffusion equations that describe the spatio-temporal evolution of the distributions of micro-environmental factors such as glucose, oxygen, TGFalpha, VEGF and fibronectin. These molecular species regulate tumor growth during angiogenesis. Each tumor cell is equipped with an EGFR signaling pathway linked to a cell-cycle pathway to determine its phenotype. EGFR TKIs are delivered through the blood vessels of tumor microvasculature and the response to treatment is studied. CONCLUSIONS: Our simulations demonstrated that entire tumor growth profile is a collective behaviour of cells regulated by the EGFR signaling pathway and the cell cycle. We also found that angiogenesis has a dual effect under TKI treatment: on one hand, through neo-vasculature TKIs are delivered to decrease tumor invasion; on the other hand, the neo-vasculature can transport glucose and oxygen to tumor cells to maintain their metabolism, which results in an increase of cell survival rate in the late simulation stages.  相似文献   

13.
14.
Ovarian hyperstimulation syndrome (OHSS) is one of the most dangerous iatrogenic complications in controlled ovarian hyperstimulation (COH). The exact molecular mechanism that induces OHSS remains unclear. In recent years, accumulating evidence found that exosomal miRNAs participate in many diseases of reproductive system. However, the specific role of miRNAs, particularly the follicular fluid-derived exosomal miRNAs in OHSS remains controversial. To identify differentially expressed follicular fluid exosomal miRNAs from OHSS and non-OHSS patients, the analysis based on miRNA-sequence was conducted. The levels of 291 miRNAs were significantly differed in exosomes from OHSS patients compared with normal control, and exosomal miR-27 was one of the most significantly down-regulated miRNAs in the OHSS group. By using MiR-27 mimic, we found it could increase ROS stress and apoptosis by down-regulating the expression of p-ERK/Nrf2 pathway by negatively regulating SPRY2. These data demonstrate that exosomal miRNAs are differentially expressed in follicular fluid between patients with and without OHSS, and follicular fluid exosomal miR-27 may involve in the pathological process of OHSS development.  相似文献   

15.
Exosomes are secreted vesicles of endosomal origin involved in signaling processes. We recently showed that the syndecan heparan sulfate proteoglycans control the biogenesis of exosomes through their interaction with syntenin-1 and the endosomal-sorting complex required for transport accessory component ALIX. Here we investigated the role of heparanase, the only mammalian enzyme able to cleave heparan sulfate internally, in the syndecan-syntenin-ALIX exosome biogenesis pathway. We show that heparanase stimulates the exosomal secretion of syntenin-1, syndecan and certain other exosomal cargo, such as CD63, in a concentration-dependent manner. In contrast, exosomal CD9, CD81 and flotillin-1 are not affected. Conversely, reduction of endogenous heparanase reduces the secretion of syntenin-1-containing exosomes. The ability of heparanase to stimulate exosome production depends on syntenin-1 and ALIX. Syndecans, but not glypicans, support exosome biogenesis in heparanase-exposed cells. Finally, heparanase stimulates intraluminal budding of syndecan and syntenin-1 in endosomes, depending on the syntenin-ALIX interaction. Taken together, our findings identify heparanase as a modulator of the syndecan-syntenin-ALIX pathway, fostering endosomal membrane budding and the biogenesis of exosomes by trimming the heparan sulfate chains on syndecans. In addition, our data suggest that this mechanism controls the selection of specific cargo to exosomes.  相似文献   

16.
Regulation of angiogenesis by tissue factor cytoplasmic domain signaling   总被引:24,自引:0,他引:24  
Hemostasis initiates angiogenesis-dependent wound healing, and thrombosis is frequently associated with advanced cancer. Although activation of coagulation generates potent regulators of angiogenesis, little is known about how this pathway supports angiogenesis in vivo. Here we show that the tissue factor (TF)-VIIa protease complex, independent of triggering coagulation, can promote tumor and developmental angiogenesis through protease-activated receptor-2 (PAR-2) signaling. In this context, the TF cytoplasmic domain negatively regulates PAR-2 signaling. Mice from which the TF cytoplasmic domain has been deleted (TF Delta CT mice) show enhanced PAR-2-dependent angiogenesis, in synergy with platelet-derived growth factor BB (PDGF-BB). Ocular tissue from diabetic patients shows PAR-2 colocalization with phosphorylated TF specifically on neovasculature, suggesting that phosphorylation of the TF cytoplasmic domain releases its negative regulatory control of PAR-2 signaling in angiogenesis. Targeting the TF-VIIa signaling pathway may thus enhance the efficacy of angiostatic treatments for cancer and neovascular eye diseases.  相似文献   

17.
研究表明,肿瘤的生长转移和新血管的生成有密切关系,其中血管内皮细胞生长因子(vascular endothelial growth factor,VEGF)及其信号途径在肿瘤血管生成中起关键作用。阻断该途径的任何环节均可有效抑制肿瘤血管的生成,进而抑制肿瘤的生长和转移。近年来,已有多种以VEGF/VEGFR为靶点的抗肿瘤血管生成药物投入临床应用,其中bevacizumab为第一个获批上市的抗肿瘤血管生成药物。继bevacizumab后,一种以基因工程手段获得的人Fc融合蛋白Zaltrap也成功在美国上市,这种杂交分子的药代动力学明显优于单克隆抗体,能更好的遏制肿瘤血管的发生并消退已形成的肿瘤血管。在肿瘤的临床治疗中,Zaltrap比bevacizumab显示出更大的优势。此外,VEGFC/D Trap及小分子酪氨酸激酶抑制剂也能有效抑制肿瘤血管的生成。在此对以VEGF/VEGFR为靶点的抗肿瘤血管生成药物进行综述。  相似文献   

18.
Notch: a key regulator of tumor angiogenesis and metastasis   总被引:1,自引:0,他引:1  
The Notch signaling pathway is critical for many developmental processes including physiologic angiogenesis. Notch is also implicated in having a key role in tumor angiogenesis. Preclinical and clinical experience with anti-angiogenic strategies indicates that they may be limited by tumor resistance and recurrence, which has led to the search for alternative angiogenic treatment strategies. Significant progress has been made in shedding light on the complex mechanisms by which Notch signaling can influence tumor growth by disrupting vasculature in an array of tumor models (Ridgway et al., 2006). These results have led to the consideration of Notch as an attractive target to block tumor angiogenesis and inhibit growth. However, studies of inhibition of Notch signaling in different tumor models have uncovered similarly variable results, and some unexpected adverse effects. The ability of Notch to function in a context-dependent manner as a determinant of cell fate, a tumor suppressor, and an oncogene may partially explain the complexity in interpreted the role of Notch signaling inhibitors in preclinical tumor studies. In addition, Notch may also play an important role in metastasis via its direct effects on the vasculature and by modulation of epithelial-mesenchymal transition in tumor cells. Here we present a current understanding of Notch signaling in tumor angiogenesis, and discuss recent work on the role of Notch in tumor metastatic progression.  相似文献   

19.
韩哲  杨雪松  耿建国  王丽京 《生命科学》2010,(10):1020-1024
分泌型糖蛋白Slit及其受体Roundabout(Robo)最初是作为一类重要的发育中神经元轴突导向分子而被发现的。目前为止对Slit/Robo信号对神经系统发育过程中轴突吸引或排斥的导向功能研究比较多,而对在发育中生长方式与其非常相似的血管发生过程中研究比较少。现有研究提示两者在发育过程中可能存在共同的信号调控机制,是Slit/Robo信号通路在血管新生中充当着重要的角色。该文就Slit/Robo信号对血管内皮细胞迁移的调节、对血管新生的作用及其可能介导的信号通路进行综述,以期进一步推动Slit/Robo信号通路在血管发生中的研究。  相似文献   

20.
Emerging evidence indicates that osteoclasts from osteosarcoma patients have higher tartrate resistant acid phosphatase (TRAP) activity. Exosomes are important mediators of the cell-to-cell communication. However, whether osteosarcoma cell–derived exosomes mediate the osteoclastogenesis of bone marrow-derived monocytes (BMDMs) and its mechanisms are largely unknown. In this research, we validated the communication between osteosarcoma cells and BMDMs. Here, we found that osteosarcoma cell-derived exosomes can be transfered to BMDMs to promote osteoclast differentiation. The miR-501-3p is highly expressed in exosomes derived from osteosarcoma and could be transferred to BMDMs through the exosomes. Moreover, osteosarcoma-derived exosomal miR-501-3p mediate its role in promoting osteoclast differentiation and aggravates bone loss in vitro and in vivo. Mechanistically, osteosarcoma cell-derived exosomal miR-501-3p could promote osteoclast differentiation via PTEN/PI3K/Akt signaling pathway. Collectively, our results suggest that osteosarcoma-derived exosomal miR-501-3p promotes osteoclastogenesis and aggravates bone loss. Therefore, our study reveals a novel mechanism of osteoclastogenesis in osteosarcoma patients and provides a novel target for diagnosis or treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号