首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IntDOT is a tyrosine recombinase encoded by the conjugative transposon CTnDOT. The core binding (CB) and catalytic (CAT) domains of IntDOT interact with core-type sites adjacent to the regions of strand exchange, while the N-terminal arm binding (N) domain interacts with arm-type sites distal to the core. Previous footprinting experiments identified five arm-type sites, but how the arm-type sites participate in the integration and excision of CTnDOT was not known. In vitro integration assays with substrates containing arm-type site mutants demonstrated that attDOT sequences containing mutations in the L1 arm-type site or in the R1 and R2 or R1 and R2′ arm-type sites were dramatically defective in integration. Substrates containing mutations in the L1 and R1 arm-type sites showed a 10- to 20-fold decrease in detectable in vitro excision, but introduction of multiple arm-type site mutations in attR did not have an effect on the excision frequency. A sixth arm-type site, the R1′ site, was also identified and shown to be required for integration and important for efficient excision. These results suggest that intramolecular IntDOT interactions are required for integration, while the actions of accessory factors are more important for excision. Gel shift assays performed in the presence of core- and arm-type site DNAs showed that IntDOT affinity for the attDOT core was enhanced when IntDOT was simultaneously bound to arm-type site DNA.Conjugative transposons (CTns), also known as integrative and conjugative elements (ICEs), are mobile genetic elements that are widespread in Bacteroides spp. and are implicated in the spread of antibiotic resistance. These elements are normally integrated into the host chromosome but can excise, replicate, and transfer to a recipient cell by conjugation (34). Since CTns commonly carry antibiotic resistance genes, it is likely that the increase in antibiotic-resistant Bacteroides strains has been mediated through the lateral transfer of these elements (36). One of the best-studied ICEs in Bacteroides is the conjugative transposon CTnDOT. CTnDOT is 65 kb in size and carries genes encoding resistance to tetracycline and erythromycin. Over the past 30 years, the incidence of tetracycline resistance has increased to 80% of Bacteroides isolates due to the presence of CTnDOT-type elements (36).Integration and excision of CTnDOT results from site-specific recombination between regions of DNA known as attachment (att) sites. During integration, the joined ends of the closed circular intermediate (attDOT) recombine with the bacterial target sequence (attB) to form the recombinant sites (attL and attR). The integration reaction requires IntDOT, a CTnDOT-encoded protein that has been identified as a member of the tyrosine recombinase family, as well as a host factor encoded by Bacteroides (8, 21). Site-specific recombination between the attL and attR attachment sites results in excision of CTnDOT from the host chromosome. IntDOT is also required for excision, as are three element-encoded proteins: Orf2c, Orf2d, and Exc, as well a Bacteroides host factor (8, 38). The roles of these accessory proteins are not well understood, although Orf2c and Orf2d have been shown to bind DNA (unpublished results).One of the best-studied tyrosine recombinases is the integrase (Int) of the lambda system. The C terminus of Int includes the core binding (CB) and catalytic (CAT) domains that bind to core-type sites, which flank the sites of cleavage and strand exchange (2, 24). The N-terminal arm-binding (N) domain binds to arm-type sites that are distal to the core-type sites. In the presence of the appropriate host and accessory factors, Int binding to arm-type sites is required for the formation of higher-order protein/DNA complexes known as intasomes, which are required for integration and excision (15, 18, 22). Int is capable of making intramolecular interactions (interactions between Int monomers on the same attachment site) and intermolecular interactions (interactions between Int monomers on different attachment sites) during recombination (15, 16). In the lambda system, the directionality of the reaction is regulated by Int interactions with arm-type sites in conjunction with the integration host factor (IHF) during the formation of an integrative intasome, or IHF, Xis, and FIS during the formation of the two excisive intasomes (1, 4, 42).Presumably, IntDOT occupancy of specific arm-type sites in conjunction with interactions of accessory factors with att sites leads to the assembly of integrative or excisive intasomes and thus contributes to the directionality of IntDOT-mediated recombination. Previous DNase I footprinting experiments identified five arm-type binding sites on attDOT (11). In this study, mutations were constructed in the five sites to determine their roles in the integration and excision of CTnDOT. In addition, a sixth arm-type site was discovered that is important for both integrative and excisive recombination. The results of gel shift assays also show that the interaction of IntDOT with core-type sites and arm-type sites involves cooperative interactions.  相似文献   

2.
NBU1 is a Bacteroides mobilizable transposon (MTn) that is integrated within the host chromosome and requires CTnDOT functions for its excision and transfer into a new host. The NBU1 integrase IntN1 has been classified as a tyrosine recombinase based on the presence of conserved residues. We created alanine mutants of the residues R291, K314, H393, R396, H419 and the conserved substitution Y429F and tested them for integration efficiency. The results suggest that these residues in IntN1 are important for integration, and Y429 could be the catalytic nucleophile. We employed suicide substrates and partially purified IntN1 to determine the positions of IntN1 cleavage within the 14 bp common core region that is identical in both NBU1 att sites. We show that IntN1 makes 7 bp staggered cuts on the top and bottom strands. From previous mutational analysis of the att sites, we show that two specific mutations near the site of bottom strand cleavage within this 7 bp region increased integration, and mutations of the two bases near top strand cleavage site had no effect on integration. These results indicate that IntN1 lacks the strict requirement for homology between the recombining sites seen with other tyrosine recombinases. We also show that phosphorothioate substitutions at the cleavage site and 1 bp downstream inhibited cleavage by IntN1. This differs from other studied tyrosine recombinases where inhibition occurs by substitutions at the cleavage site only.  相似文献   

3.
The Bacteroides mobilizable transposon NBU1 uses an integrase (IntN1) that is a tyrosine recombinase for its integration and excision from the host chromosome. Previously we showed that IntN1 makes 7-bp staggered cuts within the NBU1 att sites, and certain mismatches within the crossover region of the attN1 site (G(-2)C attN1) or the chromosomal target site (C(-3)G attBT1-1) enhanced the in vivo integration efficiency. Here we describe an in vitro integration system for NBU1. We used nicked substrates and a Holliday junction trapping peptide to show that NBU1 integration proceeds via formation of a Holliday junction intermediate that is formed by exchange of bottom strands. Some mismatches next to the first strand exchange site (in reactions with C(-3)G attBT1-1 or G(-2)C attN1 with their wild-type partner site) not only allowed formation of the Holliday junction intermediate but also increased the rate of recombinant formation. The second strand exchange appears to be homology-dependent. IntN1 is the only tyrosine recombinase known to catalyze a reaction that is more efficient in the presence of mismatches and where the first strand exchange is homology-independent. The possible mechanisms by which the mismatches stimulate recombination are discussed.  相似文献   

4.
NBU1 is an integrated 10.3-kbp Bacteroides element, which can excise and transfer to Bacteroides or Escherichia coli recipients, where it integrates into the recipient genome. NBU1 relies on large, >60-kbp, conjugative transposons for factors that trigger excision and for mobilization of the circular form to recipients. Previously, we showed that a single integrase gene, intN1, was necessary and sufficient for integration of NBU1 into its target site on the Bacteroides or E. coli genome. We now show that an unexpectedly large region of NBU1 is required for excision. This region includes, in addition to intN1, four open reading frames plus a large region downstream of the fourth gene, prmN1. This downstream sequence was designated XRS, for "excision-required sequence." XRS contains the oriT of the circular form of NBU1 and about two-thirds of the adjacent mobilization gene, mobN1. This is the first time an oriT, which is involved in conjugal transfer of the circular form, has been implicated in excision. Disruption of the gene immediately downstream of intN1, orf2, completely abolished excision. The next open reading frame, orf2x, was too small to be disrupted, so we still do not know whether it plays a role in the excision reaction. Deletions were made in each of two open reading frames downstream of orf2x, orf3 and prmN1. Both of these deletions abolished excision, indicating that these genes are also essential for excision. Attempts to complement various mutations in the excision region led us to realize that a portion of the excision region carrying prmN1 and part of the XRS (XRS(HIII)) inhibited excision when provided in trans on a multicopy plasmid (8 to 10 copies per cell). However, a fragment carrying prmN1, XRS, and the entire mobilization gene, mobN1, did not have this effect. The smaller fragment may be interfering with excision by attracting proteins made by the intact NBU1 and thus removing them from the excision complex. Our results show clearly that excision is a complex process that involves several proteins and a cis-acting region (XRS) which includes the oriT. We suggest that this complex excision machinery may be necessary to allow NBU1 to coordinate nicking at the ends during excision and nicking at the oriT during conjugal transfer, to prevent premature nicking at the oriT before NBU1 has excised and circularized.  相似文献   

5.
Zhang L  Ou X  Zhao G  Ding X 《Journal of bacteriology》2008,190(19):6392-6397
The Streptomyces phage BT1 encodes a site-specific integrase of the large serine recombinase subfamily. In this report, the enzymatic activity of the BT1 integrase was characterized in vitro. We showed that this integrase has efficient integration activity with substrate DNAs containing attB and attP sites, independent of DNA supercoiling or cofactors. Both intra- and intermolecular recombinations proceed with rapid kinetics. The recombination is highly specific, and no reactions are observed between pairs of sites including attB and attL, attB and attR, attP and attL, or attP and attR or between two identical att sequences; however, a low but significant frequency of excision recombination between attL and attR is observed in the presence of the BT1 integrase alone. In addition, for efficient integration, the minimal sizes of attB and attP are 36 bp and 48 bp, respectively. This site-specific recombination system is efficient and simple to use; thus, it could have applications for the manipulation of DNA in vitro.  相似文献   

6.
Streptomyces phage φBT1 integrates its genome into the attB site of the host chromosome with the attP site to generate attL and attR. The φBT1 integrase belongs to the large serine recombinase subfamily which directly binds to target sites to initiate double strand breakage and exchange. A recombination directionality factor (RDF) is commonly required for switching integration to excision. Here we report the characterization of the RDF protein for φBT1 recombination. The RDF, is a phage-encoded gp3 gene product (28 KDa), which allows efficient active excision between attL and attR, and inhibits integration between attB and attP; Gp3 can also catalyze topological relaxation with the integrase of supercoiled plasmids containing a single excision site. Further study showed that Gp3 could form a dimer and interact with the integrase whether it bound to the substrate or not. The synapse formation of attL or attR alone with integrase and Gp3 showed that synapsis did not discriminate between the two sites, indicating that complementarity of central dinucleotides is the sole determinant of outcome in correct excision synapses. Furthermore, both in vitro and in vivo evidence support that the RDFs of φBT1 and φC31 were fully exchangeable, despite the low amino acid sequence identity of the two integrases.  相似文献   

7.
NBU1 is a 10.3 kbp Bacteroides mobilizable transposon. A previous study had identified a 2.7 kbp segment of the excised circular intermediate that was sufficient to mediate integration of the element after transfer. This segment contained an integrase gene, intN1, and a region spanning the ends of the circular form within which integration occurred (attN1). The integrase protein, IntN1, appeared to be a member of the tyrosine recombinase family because it contains the canonical C-terminal RKHRHY [RK(H/K)R(H/W)Y] motif that characterizes members of that family. In this study, we describe an Escherichia coli-based integration assay system that has allowed us to characterize attN1 in detail. We first localized attN1 to a 250 bp region. We then used site-directed mutations to identify directly repeated sequences within attN1 that were required for site-specific integration. The locus of NBU1 site-specific integration in the Bacteroides thetaiotaomicron chromosome, attBT1-1, contains a 14 bp sequence that is identical to a 14 bp sequence that spans the joined ends of the NBU1 attN1 site (common core sequences). The effects of mutations in the common core were different from the expected results if NBU1 integration was similar to lambda integration. In particular single base changes near one end of the common core region, which introduced heterology, actually increased the frequency of integration. By contrast, compensating changes that restored homology in the common core region reduced the integration frequency. The recombination mechanism also differs from the one used by conjugative transposons that have coupling sequences between the sites of strand cleavage and exchange. These results indicate that although NBU1 integrase is considered to be a member of the tyrosine recombinase family, it catalyses an integrative recombination reaction that occurs by a different crossover mechanism.  相似文献   

8.
Evidence for an unusual type of cointegrate formation was found as the result of analyzing three integration events that fused a mobilization-deficient Bacteroides plasmid (pEG920) with the excised circular form of a nonreplicating Bacteroides element (NBU1), NBU1 is capable of inserting itself into DNA segments, but the cointegrates were the result of invasion of NBU1 by pEG920, not vice versa. The same site on pEG920 was involved in all cases. Sequence analysis of the cointegrates suggested that the integration events may have been the result of a multistep process in which a conjugative transposon was involved.  相似文献   

9.
Bacteroides conjugative transposons can act in trans to excise, circularize, and transfer unlinked integrated elements called NBUs (for nonreplicating Bacteroides units). Previously, we localized and sequenced the mobilization region of one NBU, NBU1, and showed that this mobilization region was recognized by the IncP plasmids RP4 and R751, as well as by the Bacteroides conjugative transposons. We report here that the single mobilization protein carried by NBU1 appears to be a bifunctional protein that binds to the oriT region and catalyzes the nicking reaction that initiates the transfer process. We have also localized and sequenced the mobilization region of a second NBU, NBU2. The NBU2 mobilization region was 86 to 90% identical at the DNA sequence to the oriT-mob region of NBU1. The high sequence similarity between NBU1 and NBU2 ended abruptly after the stop codon of the mob gene and about 1 kbp upstream of the oriT region, indicating that the oriT-mob regions of NBU1 and NBU2 may be on some sort of cassette. A region on NBU1 and NBU2 which lies immediately upstream of the oriT region had 66% sequence identity to a region upstream of the oriT region on a mobilizable transposon, Tn4399, an element that had previously appeared to be completely unrelated to the NBUs.  相似文献   

10.
Azinomycin B is a hybrid polyketide/nonribosomal peptide natural product and possesses antitumor activity by interacting covalently with duplex DNA and inducing interstrand crosslinks. In the biosynthetic study of azinomycin B, a gene (orf1) adjacent to the azinomycin B gene cluster was found to be essential for the survival of the producer, Streptomyces sahachiroi ATCC33158. Sequence analyses revealed that Orf1 belongs to the HTH_42 superfamily of conserved bacterial proteins which are widely distributed in pathogenic and antibiotic-producing bacteria with unknown functions. The protein exhibits a protective effect against azinomycin B when heterologously expressed in azinomycin-sensitive strains. EMSA assays showed its sequence nonspecific binding to DNA and structure-specific binding to azinomycin B-adducted sites, and ChIP assays revealed extensive association of Orf1 with chromatin in vivo. Interestingly, Orf1 not only protects target sites by protein–DNA interaction but is also capable of repairing azinomycin B-mediated DNA cross-linking. It possesses the DNA glycosylase-like activity and specifically repairs DNA damage induced by azinomycin B through removal of both adducted nitrogenous bases in the cross-link. This bifunctional protein massively binds to genomic DNA to reduce drug attack risk as a novel DNA binding protein and triggers the base excision repair system as a novel DNA glycosylase.  相似文献   

11.
12.
Serine integrases, DNA site-specific recombinases used by bacteriophages for integration and excision of their DNA to and from their host genomes, are increasingly being used as tools for programmed rearrangements of DNA molecules for biotechnology and synthetic biology. A useful feature of serine integrases is the simple regulation and unidirectionality of their reactions. Recombination between the phage attP and host attB sites is promoted by the serine integrase alone, giving recombinant attL and attR sites, whereas the ‘reverse’ reaction (between attL and attR) requires an additional protein, the recombination directionality factor (RDF). Here, we present new experimental data on the kinetics and regulation of recombination reactions mediated by ϕC31 integrase and its RDF, and use these data as the basis for a mathematical model of the reactions. The model accounts for the unidirectionality of the attP × attB and attL × attR reactions by hypothesizing the formation of structurally distinct, kinetically stable integrase–DNA product complexes, dependent on the presence or absence of RDF. The model accounts for all the available experimental data, and predicts how mutations of the proteins or alterations of reaction conditions might increase the conversion efficiency of recombination.  相似文献   

13.
Many Bacteroides clinical isolates carry large conjugative transposons that, in addition to transferring themselves, excise, circularize, and transfer smaller, unlinked chromosomal DNA segments called NBUs (nonreplicating Bacteroides units). We report the localization and DNA sequence of a region of one of the NBUs, NBU1, that was necessary and sufficient for mobilization by Bacteroides conjugative transposons and by IncP plasmids. The fact that the mobilization region was internal to NBU1 indicates that the circular form of NBU1 is the form that is mobilized. The NBU1 mobilization region contained a single large (1.4-kbp) open reading frame (ORF1), which was designated mob. The oriT was located within a 220-bp region upstream of mob. The deduced amino acid sequence of the mob product had no significant similarity to those of mobilization proteins of well-characterized Escherichia coli group plasmids such as RK2 or of either of the two mobilization proteins of Bacteroides plasmid pBFTM10. There was, however, a high level of similarity between the deduced amino acid sequence of the mob product and that of the product of a Bacteroides vulgatus cryptic open reading frame closely linked to a cefoxitin resistance gene (cfxA).  相似文献   

14.
15.
The Bacteroides species harbor a family of conjugative transposons called tetracycline resistance elements (Tcr elements) that transfer themselves from the chromosome of a donor to the chromosome of a recipient, mobilize coresident plasmids, and also mediate the excision and circularization of members of a family of 10- to 12-kbp insertion elements which share a small region of DNA homology and are called NBUs (for nonreplicating Bacteroides units). The NBUs are sometimes cotransferred with Tcr elements, and it was postulated previously that the excised circular forms of the NBUs were plasmidlike forms and were transferred like plasmids and then integrated into the recipient chromosome. We used chimeric plasmids containing one of the NBUs, NBU1, and a Bacteroides-Escherichia coli shuttle vector to show that this hypothesis is probably correct. NBU1 contained a region that allowed mobilization by both the Tcr elements and IncP plasmids, and we used these conjugal elements to allow us to estimate the frequencies of excision, mobilization, and integration of NBU1 in Bacteroides hosts to be approximately 10(-2), 10(-5) to 10(-4), and 10(-2), respectively. Although functions on the Tcr elements were required for the excision-circularization and mobilization of NBU1, no Tcr element functions were required for integration into the recipient chromosome. Analysis of the DNA sequences at the integration region of the circular form of NBU1, the primary insertion site in the Bacteroides thetaiotaomicron 5482 chromosome, and the resultant NBU1-chromosome junctions showed that NBU1 appeared to integrate into the primary insertion site by recombining within an identical 14-bp sequence present on both NBU1 and the target, thus leaving a copy of the 14-bp sequence at both junctions. The apparent integration mechanism and the target selection of NBU1 were different from those of both XBU4422, the only member of the conjugal Tcr elements for which these sequences are known, and Tn4399, a mobilizable Bacteroides transposon. The NBUs appear to be a distinct type of mobilizable insertion element.  相似文献   

16.
NBU1 is a 10.3-kbp integrated Bacteroides element that can be induced to excise from the chromosome and can be mobilized to a recipient by trans-acting functions provided by certain Bacteroides conjugative transposons. The NBU1 transfer intermediate is a covalently closed circle, which is presumed to be the form that integrates into the recipient genome. We report here that a 2.4-kbp segment of NBU1 was all that was required for site-specific integration into the chromosome of Bacteroides thetaiotaomicron 5482. This 2.4-kbp region included the joined ends of the NBU1 circular form (attN1) and a single open reading frame, intN1, which encoded the integrase. Previously, we had found that NBU1 integrates preferentially into a single site in B. thetaiotaomicron 5482. We have now shown that the NBU1 target site is located at the 3' end of a Leu-tRNA gene. The NBU1 integrase gene, intN1, was sequenced. The predicted protein had little overall amino acid sequence similarity to any proteins in the databases but had limited carboxy-terminal similarity to the integrases of lambdoid phages and to the integrases of the gram-positive conjugative transposons Tn916 and Tn1545. We also report that the intN1 gene is expressed constitutively.  相似文献   

17.
The erythromycin resistance gene ermB has been found in a variety of gram-positive bacteria. This gene has also been found in Bacteroides species but only in six recently isolated strains; thus, the gene seems to have entered this genus only recently. One of the six Bacteroides ermB-containing isolates, WH207, could transfer ermB to Bacteroides thetaiotaomicron strain BT4001 by conjugation. WH207 was identified as a Bacteroides uniformis strain based on the sequence of its 16S rRNA gene. Results of pulsed-field gel electrophoresis experiments demonstrated that the transferring element was normally integrated into the Bacteroides chromosome. The element was estimated from pulsed-field gel data to be about 100 kb in size. Since the element appeared to be a conjugative transposon (CTn), it was designated CTnBST. CTnBST was able to mobilize coresident plasmids and the circular form of the mobilizable transposon NBU1 to Bacteroides and Escherichia coli recipients. A 13-kb segment that contained ermB was cloned and sequenced. Most of the open reading frames in this region had little similarity at the amino acid sequence level to any proteins in the sequence databases, but a 1,723-bp DNA segment that included a 950-bp segment downstream of ermB had a DNA sequence that was virtually identical to that of a segment of DNA found previously in a Clostridium perfringens strain. This finding, together with the finding that ermB is located on a CTn, supports the hypothesis that CTnBST could have entered Bacteroides from some other genus, possibly from gram-positive bacteria. Moreover, this finding supports the hypothesis that many transmissible antibiotic resistance genes in Bacteroides are carried on CTns.  相似文献   

18.
Genetic and biochemical evidence suggests that λ Orf is a recombination mediator, promoting nucleation of either bacterial RecA or phage Redβ recombinases onto single-stranded DNA (ssDNA) bound by SSB protein. We have identified a diverse family of Orf proteins that includes representatives implicated in DNA base flipping and those fused to an HNH endonuclease domain. To confirm a functional relationship with the Orf family, a distantly-related homolog, YbcN, from Escherichia coli cryptic prophage DLP12 was purified and characterized. As with its λ relative, YbcN showed a preference for binding ssDNA over duplex. Neither Orf nor YbcN displayed a significant preference for duplex DNA containing mismatches or 1-3 nucleotide bulges. YbcN also bound E. coli SSB, although unlike Orf, it failed to associate with an SSB mutant lacking the flexible C-terminal tail involved in coordinating heterologous protein-protein interactions. Residues conserved in the Orf family that flank the central cavity in the λ Orf crystal structure were targeted for mutagenesis to help determine the mode of DNA binding. Several of these mutant proteins showed significant defects in DNA binding consistent with the central aperture being important for substrate recognition. The widespread conservation of Orf-like proteins highlights the importance of targeting SSB coated ssDNA during lambdoid phage recombination.  相似文献   

19.
We report the construction and analysis of a Bacteroides thetaiotaomicron recA disruption mutant and an investigation of whether RecA is required for excision and integration of Bacteroides mobile DNA elements. The recA mutant was deficient in homologous recombination and was more sensitive than the wild-type strain to DNA-damaging agents. The recA mutant was also more sensitive to oxygen than the wild type, indicating that repair of DNA contributes to the aerotolerance of B. thetaiotaomicron. Many Bacteroides clinical isolates carry self-transmissible chromosomal elements known as conjugative transposons. These conjugative transposons can also excise and mobilize in trans a family of unlinked integrated elements called nonreplicating Bacteroides units (NBUs). The results of a previous study had raised the possibility that RecA plays a role in excision of Bacteroides conjugative transposons, but this hypothesis could not be tested in Bacteroides spp. because no RecA-deficient Bacteroides strain was available. We report here that the excision and integration of the Bacteroides conjugative transposons, as well as NBU1 and Tn4351, were unaffected by the absence of RecA activity.  相似文献   

20.
NBU1 is a mobilizable transposon that excises from the Bacteroides chromosome to form a double-stranded circular transfer intermediate. Excision is triggered by exposure of the bacteria to tetracycline. Accordingly, we expected that the expression of NBU1 genes would be induced by tetracycline. To test this hypothesis, antibodies that recognized two NBU1-encoded proteins, PrmN1 and MobN1, were used to monitor production of these proteins. PrmN1 is essential for excision, and MobN1 is essential for transfer of the excised circular form. At first, expression of the genes encoding these two proteins appeared to be regulated by tetracycline, because the proteins were detectable on Western blots only after the cells were exposed to tetracycline. However, when the prmN1 gene and/or the mobN1 gene was cloned on a multicopy plasmid, production of the protein was constitutive. Initially, we assumed that the constitutive expression was due to loss of a repressor protein that was encoded by one of the other genes on NBU1. Deletions or insertions in the other genes (orf2 and orf3) on NBU1 and various integrated NBU1 derivatives abolished production of PrmN1 and MobN1. This is the opposite of what should have happened if one or both of these genes encoded a repressor. A second possibility was that when NBU1 excised, it replicated transiently, increasing the gene dosage of prmN1 and mobN1 and thereby producing enough PrmN1 and MobN1 for these proteins to become detectable. In fact, after the cells entered late exponential phase the copy number of NBU1 increased to 2 to 3 copies per cell. Production of PrmN1 and MobN1 showed a similar pattern. Any mutation in NBU1 that decreased or prevented excision also prevented elevated production of these two proteins. Our results show that the apparent tetracycline dependence of the production of PrmN1 and MobN1 is due to a growth phase- or time-dependent increase in the number of copies of the NBU1 circular form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号