首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
A selection of mouse hybridoma cell lines showed a variation of approximately two orders of magnitude in intracellular monoclonal antibody contents. The different levels directly influenced apparent specific monoclonal antibody productivity during the death phase but not during the growth phase of a batch culture. The pattern of changes in specific productivity during culture remained basically similar even though at different levels for all cell lines tested. Arresting the cells in the G1 phase using thymidine increased the specific productivity, cell volume and intracellular antibody content but at the same time led to decreased viability. In continuous culture DNA synthesis decreased with decreasing dilution rate though without an accompanying change in cell cycle and cell size distributions. The data shows both the decrease in viability and intracellular antibody content to be important factors which influence the negative association between specific antibody productivity and growth rate. In high cell density perfusion culture, when the cell cycle was prolonged by slow growth, viability was low and dead, but not lysed, cells were retained in the system, the specific antibody productivity was nearly two fold higher than that obtained in either batch or continuous cultures. The results imply that the prolongation of G1 phase and the increase in death rate of cells storing a large amount of antibody together cause an apparent increase in specific antibody productivity.  相似文献   

2.
In searching for ways to manipulate heterogeneous hybridoma cell cultures (ATCC HB124) to obtain increased production of monoclonal antibodies (IgG2a), we have selected for a higher secreting but slower growing subpopulation using the level of fluorescent surface-associated antibodies and a fluorescence-activated cell sorter. Cell surface fluorescence was found to be correlated with specific antibody secretion rate over the short term but not with intracellular antibody content. Also, the specific secretion rate of a heterogeneous population of hybridoma cells grown in batch culture has been shown to be inversely correlated with an increase in either the initial cell concentration or the medium antibody concentration. Several experiments suggest that an upper limit exists for medium antibody concentration, above which antibody is degraded at the same rate at which it is produced. Should other cell lines behave similarly, strategies for overproduction of monoclonal antibodies suggested herein could be profitably used in industry.  相似文献   

3.
For the development of optimal perfusion processes the effect of the feed and bleed rate on cell growth in a perfusion bioreactor was studied. The viable-cell density, viability, growth, death, and lysis rate and cell-cycle distribution of a hybridoma cell line producing an IgG1 were studied over a range of specific feed and bleed rates. It was found that the feed and bleed rates applied in the different cultures could be divided into two regions based on the viable-cell density and cell-cycle distribution. The cultures in the first region, low feed rates (0.5 and 1.0 d(-1)) combined with low bleed rates (0.05 and 0.10 d(-1)), were nutrient-limited, as an increase in the feed rate resulted in an increase in the viable-cell density. The cultures in the second region, high feed and bleed rates, were nonnutrient-limited. In this region the viable-cell density decreased more or less linearly with an increase in the bleed rate and was independent of the feed rate. This suggests that the cells were limited by a cell-related factor. Comparison of Trypan-blue dye-exclusion measurements and lactate-dehydrogenase activity measurements revealed that cell lysis was not negligible in this bioreactor set-up. Therefore, lactate-dehydrogenase activity measurements were essential to measure the death rate accurately. The specific growth rate was nearly constant for all tested conditions. The viability increased with an increase of the bleed rate and was independent of the feed rate. Furthermore, the specific productivity of monoclonal antibody was constant under all tested conditions. For the optimal design of a perfusion process it should first be established whether viability is an important parameter. If not, a bleed rate as low as possible should be chosen. If low viabilities are to be avoided, the bleed rate chosen should be higher, with the value depending on the desired viability. Next, the feed rate should be set at such a rate that the cells are just in the nonnutrient-limited region.  相似文献   

4.
Since it was first introduced in late 1990s Wave bioreactor has been used for protein production by mammalian and insect cell lines. However, using Wave bioreactor to produce human monoclonal antibody by stable Drosophila Schneider 2 (S2) cell transfectants has not been reported before. In this study, S2 cells were co-transfected with an inducible vector expressing human monoclonal antibody heavy and light chains, respectively, specific for hemagglutinin (HA) of H5N1 influenza virus. Stable S2 transfectant clone was selected by limiting dilution assay. Stable S2 transfectant clone that produce the highest amount of human monoclonal antibody was inoculated into two 2-l disposable cellbags, where cell growth and antibody production were compared between batch and perfusion cultures using Wave bioreactor. Here, we report that maximum viable cell density reached 1.06?×?10(7) cells/ml in batch culture; whereas 1.04?×?10(8)?cells/ml was achieved in perfusion culture. The maximum volumetric antibody productivity in batch culture was 52?mg/l/day; while perfusion culture yielded 1,437?mg/l/day. As a result, the total antibody production was 201?mg in batch culture and 8,212?mg in perfusion culture. The antibody produced by both cultures displays full neutralizing activity. Thus, our results provide strong support for using Wave bioreactor in perfusion culture for a large-scale production of human monoclonal antibody by stable S2 cell transfectants.  相似文献   

5.
The metabolic pattern and cell culture kinetics of high-cell-density perfusion cultures were compared under two different oxygen transfer conditions: oxygen limiting and not limiting. When oxygen was a limiting factor during perfusion culture, both specific glucose uptake and lactate production rates increased, compared to non-oxygen-limited condition, by about 60% and 30%, respectively. The specific glutamine uptake rate under oxygen-limited conditions was almost 4.0 times higher than that under non-oxygen-limited conditions. The activity of lactate dehydrogenase (LDH) released into the medium by the dead cells can be used as an indicator for the metabolic and physiological conditions related to oxygen limitation. There was a 3.2 times higher specific rate of LDH activity released by dead cells in oxygen-limited cultures than those in non-oxygen-limited cultures. The specific production rate of monoclonal antibody was not significantly affected by the oxygen transfer conditions during the rapid cell growth period, but it rapidly increased toward the end of perfusion cultures. The higher perfusion rate may have limited further cell growth during high-cell-density perfusion culture, because cell damage was caused by the hydrodynamic shear within a hollow fiber microfiltration cartridge installed to withdraw the spent medium and the waste metabolites. (c) 1993 John Wiley & Sons, Inc.  相似文献   

6.
Experimental data from six hybridoma cell lines grown under diverse experimental conditions in both normal continuous and perfusion cultures are analyzed with respect to the significance of nutrients and products in determining the growth and death rates of cells and with respect to their mathematical modeling. It is shown that neither nutrients (glucose and glutamine) nor the common products lactic acid, ammonia, and monoclonal antibody can be generally assumed to be the clear-limiting or inhibiting factors for most of the cultures. Correspondingly, none of the unstructured models existing in the literature can be generally applied to describe the experimental data obtained over a relatively wide range of cultivation conditions as considered in this work. Surprisingly, for all cultures the specific growth rate (mu) almost linearly correlates with the ratio of the viable cell concentration (NV) to the dilution (perfusion) rate (D). Similarly, the specific death rate (kd) is a function of the ratio of the total cell concentration (Nt) to the dilution (perfusion) rate. These results strongly suggest the formation of not yet identified critical factors or autoinhibitors that determine both the growth and death rates of hybridoma cells. Based on these observations, simple kinetic models are developed for mu and kd which describe the experimental data satisfactorily. Analysis of the experimental data with the kinetic models reveals that under the current cultivation conditions the formation rate of the autoinhibitor(s) or the sensitivity of cell growth and death to the autoinhibitor(s) is mainly affected by the medium composition. Irrespective of the cell lines, cells grown on serum-containing media have almost the same model parameters, which are distinctively different from those of cells grown on serum-free media. Furthermore, in contrast to the prevailing view, kd is shown to positively correlate with mu if the effects of cell concentration and dilution (perfusion) rate are considered. Several important implications of these findings are discussed for the optimization and control of animal cell culture.  相似文献   

7.
Summary The cell growth and monoclonal antibody production characteristics of two rat x mouse heterohybridoma cell lines, designated 187.1 and M1/9.3, were investigated using a biocompatible microencapsulation technology. Both cell lines, derived from the fusion of immunized rat spleen cells with either the NS1 or X63Ag8.653 myeloma cell lines, were found to reach a maximum intracapsular cell density of 1.3 to 1.5×107 cells/ml during a 27-d culture period. During this period, rat monoclonal antibody accumulated in the intracapsular space of both cultures to a final concentration of 2.0 to 2.8 mg/ml. Comparison of the concentration of rat monoclonal antibody in the extracapsular vs. the intracapsular space of both cultures indicated that significantly less than 1% of the antibody produced by the encapsulated hybridoma cells was capable of transiting the microcapsule membrane during the culture period. Due to the partition of the rat monoclonal antibody within the intracapsular space, the initial purity of the antibody harvested from 21-d microcapsule cultures of 187.1 and M1/9.3 cells was approximately 48 and 75% by weight, respectively. Analysis of the intracapsular protein by sodium dodecyl sulfoxide gel electrophoresis at different times during the culture period demonstrated that the principal contaminant associated with the unpurified antibody was bovine serum albumin.  相似文献   

8.
A perfusion system is described for the production of a human monoclonal antibody in non-secreting murine myeloma (NS0) cells that was previously shown to be difficult to produce at high levels using fed-batch culture. The perfusion system was based on the use of a commercially available cell settler as the separation device to separate the cells from the culture. Separation efficiency of the cell settler was above 98%. Based on the growth and glucose consumption rates, fresh media was added to the culture and the turnover rate for the bioreactor was set at a maximum of 1.5 times the bioreactor volume per day. The perfusion process resulted in twice the maximum viable cell densities and up to three times the total protein production in a 53-day run period when compared to the fed-batch process. In addition, charge heterogeneity of the antibody as measured by ion exchange chromatography was lower for material purified from the perfusion runs compared to fed-batch. Perfusion mode of culture using a commercially available gravity settler is therefore a viable alternative to fed-batch mode for high-level production of this monoclonal antibody in NS0 cells.  相似文献   

9.
The effects of the microenvironment and the nature of the limiting nutrient on culture viability and overall MAb productivity were explored using a hybridoma cell line which characteristically produces MAb in the stationary phase. A direct comparison was made of the changes in the metabolic profiles of suspension and PEG-alginate immobilized (0.8 mm beads) batch cultures upon entry into the stationary phase. The shifts in glucose, glutamine, and amino acid metabolism upon entry into the stationary phase were similar for both microenvironments. While the utilization of most nutrients in the stationary phase decreased to below 20% of that in the growth phase, antibody production was not dramatically affected. The immobilized culture did exhibit a 1.5-fold increase in the specific antibody rate over the suspension culture in both the growth and stationary phases. The role of limiting nutrient on MAb production and cell viability was assessed by artificially depleting a specific nutrient to 1% of its control concentration. An exponentially growing population of HB121 cells exposed to these various depletions responded with dramatically different viability profiles and MAb production kinetics. All depletions resulted in growth-arrested cultures and nongrowth-associated MAb production. Depletions in energy sources (glucose, glutamine) or essential amino acids (isoleucine) resulted in either poor viability or low antibody productivity. A phosphate or serum depletion maintained antibody production over at least a six day period with each resulting in a 3-fold higher antibody production rate than in growing batch cultures. These results were translated to a high-density perfusion culture of immobilized cells in the growth-arrested state with continued MAb expression for 20 days at a specific rate equal to that observed in the phosphate- and serum-depleted batch cultures.  相似文献   

10.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutamine, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

11.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutaminE, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

12.
The monoclonal antibody productivity of cell culture systems is strongly dependent on the maintenance of hybridoma cell viability. We report that partial (<50%) and transient (3 h) inhibition of protein synthesis by cycloheximide or deprivation of an essential amino acid induces apoptosis (programmed cell death) in B cell hybridomas. This unusual mechanism of apoptosis induction is likely to play a significant role in limiting cell viability in batch and perfusion cultures of hybridomas and emphasizes the importance of constantly maintaining a near optimal rate of macromolecular synthesis by optimization of all culture parameters. Inhibition of apoptosis in hybridomas by cell engineering and other technologies should permit, in the near future, a significant increase in the antibody productivity of existing cell culture systems.Abbreviations CHX cycloheximide - EDTA ethylenediaminetetraacetic acid - FBS fetal bovine serum - MEM minimum essential medium - PBS phosphate buffered saline  相似文献   

13.
Recombinant Chinese hamster ovary cells, producing recombinant antibody against the human platelet, were cultivated in a depth filter perfusion system (DFPS). When perfusion cultures with working volume of 1 L were operated at perfusion rates of 5/d and 6/d, volumetric antibody productivities reached values 28 and 34 times higher than that of batch suspension culture in Erlenmeyer flasks and 43 and 53 times higher than that of batch culture in a controlled stirred tank reactor, respectively. Perfusion cultures in the DFPS showed stable antibody production over the whole culture period of up to 20 days. In the DFPS, inoculated cells in suspension were entrapped in a few hours within the depth filter matrix by medium circulation and retained there until the void space of the filter matrix was saturated by the cultured cells. After cells in the depth filter matrix reached saturation, overgrown viable cells at a perfusion rate of 5/d or 6/d were continuously collected into waste medium at a density of 2-4 x 10(5) cells/mL, which resulted in stable operation at high perfusion rates, maintaining values of process parameters such as glucose/lactate concentration, pH, and dissolved oxygen concentration. Because the DFPS overcomes most drawbacks observed with conventional perfusion systems, it is preferable to be used as a key culture system to produce monoclonal antibody stably for a long culture period.  相似文献   

14.
Summary Three different stirred bioreactors of 0.5 to 12 l volume were used to scale up the production of a human monoclonal antibody. Inoculation density and stirrer speed were evaluated in batch cultures, whereas dilution rate and pH were optimized in chemostat cultures with respect to high specific antibody production rate and high antibody yield per time and reactor volume. The cell line used for the experiments was a heterohybridoma, producing immunoglobulin M (IgM) against lipopolysaccharide of Pseudomonas aeruginosa. Cells were cultured in spinner flasks of 500 ml liquid volume for adaptation to stirred culture conditions. Subsequently cells were transferred to the 1.5-1 KLF 2000 bioreactor and to the 12-1 NLF 22 bioreactor for pilot-scale cultures. Chemostat experiments were done in the 1.5-1 KLF bioreactor. Cell density, viability, glucose and lactate and antibody concentration were measured during culture experiments. In batch cultures in all three stirred bioreactors, comparable maximal cell densities and specific growth rates were achieved. Chemostat experiments showed that at a pH of 6.9 and a dilution rate of 0.57 per day the specific antibody production rate was threefold higher than similar experiments done at pH 7.2 with a dilution rate of 0.36 per day. By optimizing pH and dilution rate in chemostat cultures the daily yield of human IgM increased nearly threefold from 6 to 16 mg/day and per litre of reactor volume. The yield per litre of medium increased twofold. Correspondence to: U. Schürch  相似文献   

15.
To investigate the effect of human pyruvate carboxylase (hPC) on lactate formation in Chinese hamster ovary (CHO) cell lines, FLAG-tagged hPC was introduced into a dihydrofolate-deficient CHO cell line (DG44). Three clones expressing high levels of hPC, determined by Western blotting using an anti-FLAG monoclonal antibody, and a control cell line were established. Immunocytochemistry revealed that a substantial amount of expressed hPC protein was localized in the mitochondria of the cells. hPC expression did not impair cell proliferation. Rather, it improved cell viability at the end of adherent batch cultures with the serum-containing medium probably because of reduced lactate formation. Compared with control cells, specific lactate production rate of the three clones was decreased by 21–39%, which was because of a decreased specific glucose uptake rate and yield of lactate from glucose. Reduced lactate formation by hPC expression was also observed in suspension fed-batch cultures using a serum-free medium. Taken together, these results demonstrate that through the expression of the hPC enzyme, lactate formation in CHO cell culture can be efficiently reduced.  相似文献   

16.
It was found that the production of human monoclonal antibodies (MoAbs) by human-human hybridomas can be significantly enhanced by replacing glucose with fructose in the dish culture medium. Optimization of initial concentrations of fructose and glutamine, another influencing factor for MoAb production, enabled an enhanced production of human MoAb 2.1 times higher than that obtained using the conventional culture media employing glucose. It was shown by kinetic analysis that enhanced MoAb production at the optimum fructose concentration can be attributed to the retention of high specific antibody production rates and diminished time lag during the course of culture.These dish culture results with fructose-containing medium were successfully applied to the continuous perfusion culture with a slight modification, where 2.9- and 1.9-fold enhancements in specific antibody production rate and MoAb concentration, respectively, were attained as compared with the conventional glucose-containing medium.An inverse relationship was observed between the secreted concentrations of lactic acid and MoAb when the hybridoma was cultured in the media containing varying concentrations of fructose, i.e., the lower the lactic acid concentration, the higher the MoAb production andvice versa, suggesting that fructose at appropriate concentrations in the medium can serve as an alternative sugar for the efficient production of human MoAbs, with reduced pH shifts, for the serum-free culture of human-human hybridomas.  相似文献   

17.
Several small-scale Chinese hamster ovary (CHO) suspension cultures were grown in perfusion mode using a new acoustic filtration system. The separation performance was evaluated at different cell concentrations and perfusion rates for two different CHO cell lines. It was found that the separation performance depends inversely on the cell concentration and perfusion rate. High media flow rates as well as high cell concentrations resulted in a significant drop in the separation performance, which limited the maximal cell concentration achievable. However, packed cell volumes of 10% to 16% (corresponding to 3 to 6. 10(7) cells/mL) could be reached and were maintained without additional bleeding after shifting the temperature to 33 degrees C. Perfusion, up to 50 days, did not harm the cells and did not result in a loss of performance of the acoustic filter as often seen with other perfusion systems. Volumetric productivities in perfusion mode were 2- to 12-fold higher for two cell lines producing two different glycoproteins when compared to fed-batch or batch processes using the same cell lines. Product concentrations were in the range of 20% to 80% of batch or fed-batch culture, respectively. In addition, using the protease-sensitive product rhesus thrombopoietin, we could show that cultivation in perfusion mode drastically reduced proteolysis when compared to a batch culture without addition of protease inhibitors such as leupeptin.  相似文献   

18.
Production of monoclonal antibody against hepatitis B surface antigen was carried out by perfusion culture coupled with a selective removal system for ammonium ion. The removal system is composed of three sub-systems namely, cell separation by cross-flow ceramic filter, dialysis by hollow fiber module and ion-exchange by zeolite A-3 packed bed column. The ammonium ion concentration in the culture broth was effectively maintained below the inhibitory level, and the viable cell density reached 2.5×107 cells ml–1 which was three times that of conventional perfusion cultures. The monoclonal antibody accumulated to a concentration as high as 26.3×105 mIU–1. This is already almost half of the amount producedin vivo. The numerical investigation of the ammonium ion removal system showed the possibility to improve much more the performance of this perfusion cultivation system.  相似文献   

19.
连续灌流培养杂交瘤细胞生产单克隆抗体   总被引:3,自引:1,他引:2  
自 2 0世纪 70年代以来 ,工程抗体在基础医学研究、临床诊断和治疗 ,以及免疫预防等领域中的广泛应用 ,大大促进了其产业化的进程。目前工业化生产单克隆抗体的主要方法是通过发酵罐、中空纤维和固定床等生物反应器培养系统 ,以微载体、微包囊法在体外大规模高密度培养杂交瘤细胞 ,再通过相关的纯化手段浓缩纯化制备抗体[1 ,2 ] 。就操作方式而言 ,一般采用两个基本策略 :①大容量高密度的悬浮培养 ,最多采用的是搅拌式气升式生物反应器 ,通过微载体依托细胞相对固定化 ,降低了搅拌培养时对细胞的剪切力 ,提高细胞的密度和稳定性及生产率。…  相似文献   

20.
Hu S  Deng L  Wang H  Zhuang Y  Chu J  Zhang S  Li Z  Guo M 《Cytotechnology》2011,63(3):247-258
The mouse-human chimeric anti-epidermal growth factor receptor vIII (EGFRvIII) antibody C12 is a promising candidate for the diagnosis of hepatocellular carcinoma (HCC). In this study, 3 processes were successfully developed to produce C12 by cultivation of recombinant Chinese hamster ovary (CHO-DG44) cells in serum-free medium. The effect of inoculum density was evaluated in batch cultures of shaker flasks to obtain the optimal inoculum density of 5 × 105 cells/mL. Then, the basic metabolic characteristics of CHO-C12 cells were studied in stirred bioreactor batch cultures. The results showed that the limiting concentrations of glucose and glutamine were 6 and 1 mM, respectively. The culture process consumed significant amounts of aspartate, glutamate, asparagine, serine, isoleucine, leucine, and lysine. Aspartate, glutamate, asparagine, and serine were particularly exhausted in the early growth stage, thus limiting cell growth and antibody synthesis. Based on these findings, fed-batch and perfusion processes in the bioreactor were successfully developed with a balanced amino acid feed strategy. Fed-batch and especially perfusion culture effectively maintained high cell viability to prolong the culture process. Furthermore, perfusion cultures maximized the efficiency of nutrient utilization; the mean yield coefficient of antibody to consumed glucose was 44.72 mg/g and the mean yield coefficient of glutamine to antibody was 721.40 mg/g. Finally, in small-scale bioreactor culture, the highest total amount of C12 antibody (1,854 mg) was realized in perfusion cultures. Therefore, perfusion culture appears to be the optimal process for small-scale production of C12 antibody by rCHO-C12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号