首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In slices and homogenate from rat brain striatum bromocriptine in marked contrast to DA. NA and apomorphine. had no stimulatory effect on adenylate cyclase activity, but antagonised the stimulatory effects of both NA and DA. Bromocriptine (10 mg/kg s.c.) decreased the turnover of DA in striatum and limbic structures 3h after drug administration. However, an increase in the turnover of NA in the brain stem and that of 5-HT in the cortex was observed 4h following treatment with bromocriptine. Possible modes of action of bromocriptine are discussed.  相似文献   

2.
The effects of chronic administration of clorgyline and pargyline on rat brain monoamine metabolism have been examined. The inhibitory selectivity of these drugs towards serotonin deamina-tion (MAO type A) and phenylethylamine deamination (MAO type B) can be maintained over a 21-day period by proper selection of low doses of these drugs (0.5-1.0 mg/kg/24h). The results are consistent with MAO type A catalyzing the deamination of serotonin and norepinephrine and with MAO type B having little effect on these monoamines. Dopamine appears to be dcaminated in vivo principally by MAO type A. Clorgyline administration during a 3-week period was accompanied by persistent elevations in brain norepinephrine concentrations; serotonin levels were also increased during the first 2 weeks, but returned towards control levels by the third week of treatment. Low doses of pargyline did not increase brain monoamine concentrations, but treatment with higher doses for 3 weeks led to elevations in brain norepinephrine and 5-hydroxytryptamine; at this time significant MAO-A inhibition had developed. The changes in monoamine metabolism seen at the end of the chronic clorgyline regimen are not due to alterations in tryptophan hydroxylase activity. At this time tyrosine hydroxylase activity was also unaffected.  相似文献   

3.
The effects of the presence of large amounts of 5-HT and of its precursor 5-HTP in brain on cerebral utilization of glucose were studied. [U-14C]Glucose was injected to fed rats that had previously been treated with L-5-HTP, L-5-HTP and an inhibitor—N-[β-(2-chlorophenoxy)-ethyl]-cyclopropylamine hydrochloride (Lilly-51641)-of MAO, or Lilly-51641 alone. Such treatment increased the concentrations of 5-HTP and 5-HT in the brain. After treatment with 5-HTP and Lilly-51641, and to a lesser extent with Lilly-51641 alone, the concentration of glucose in plasma was increased. However, the uptake of glucose by the brain did not appear to be proportionately increased, and this suggested an impairment in this mechanism. After the administration of Lilly-51641 alone and more especially of Lilly-51641 plus 5-HTP, the concentration of glucose in the brain was increased. This increase was thought to be due to an impairment of glucose utilization, because the flux of 14C from glucose to amino acids in the brain was reduced. The concentrations of most major amino acids in the brain were not greatly affected by these treatments. GABA and alanine concentrations in the brain were modestly increased after treatment with 5-HTP alone or in combination with Lilly-51641. The present results suggest that the metabolism of glucose to amino acids in the brain is altered when the concentration of 5-HTP, or more especially that of 5-HT, in the brain is increased.  相似文献   

4.
SYNTHESIS AND METABOLISM OF l-KYNURENINE IN RAT BRAIN   总被引:11,自引:7,他引:4  
Abstract— A method for the quantitative analysis of femtomole amounts of kynurenine (along with tryptophan, 3-hydroxykynurenine and kynuramine) in rat brain using high pressure liquid chroma-tography and electron-capture GLC is described. Endogenous concentrations of these substances in rat brain regions were measured, and their formation after the injection of radioactive tryptophan or kynurenine was determined. Kynurenine was formed from tryptophan in brain and was also taken up from the periphery. Extracerebral kynurenine was calculated to account for 60% of the cerebral pool of kynurenine. The cerebral rates of synthesis of kynurenine and 3-hydroxykynurenine were 0.29 and 0.17nmol/g/h. The turnover rate of kynurenine in the brain was 1.02 nmol/g/h measured from [14C]tryptophan or 1.14 nmol/g/h from [3H]kynurenine injected intraperitoneally. Kynuramine levels in different areas of the brain were similar to those of tryptamine. Following intraperitoneal injection of [14C]tryptophan, the presence of anthranilic, 3-hydroxyanthranilic, xanthurenic, kynurenic and quinaldic acids was demonstrated in the brain.  相似文献   

5.
Abstract— Rats were subjected to cerebral compression ischaemia for 15min and were subsequently recirculated with blood for periods up to 3 h. In vivo incorporation of intravenously administered L-[1–14C]valine into total brain proteins was found to be severely inhibited (about 20% of controls) after 45 min of recirculation. After 3 h, protein synthesis had increased, the specific radioactivity of proteins then being about 40% of controls. The post-ischaemic inhibition of protein synthesis was accompanied by a breakdown in polyribosomes and a concomitant increase in ribosomal subunits. In vitro incorporation of L-[1–14C]phenylalanine by a postmitochondrial supernatant system derived from animals subjected to 15 min ischaemia and 15 min recirculation was also severely reduced and showed, in contrast to control animals, no response to the addition of a specific inhibitor of polypeptide chain initiation (Poly(I)). Together with the in vivo accumulation of ribosomal subunits this indicates a block in peptide chain initiation during the early stages of recirculation.
Polyribosomes from animals subjected to 15 min ischaemia without recirculation showed a normal rate of in vitro protein synthesis which was inhibited by Poly(I) to a similar extent as polyribosomes from control animals. These results suggest that the post-ischaemic inhibition in chain initiation develops during the early stages of recirculation rather than during the ischaemic period itself.  相似文献   

6.
Abstract— It is shown that transketolase activities in red blood cells and whole brain of normal and thiamine-deficient rats correlate well with heart frequencies.
The effect of thiamine depletion on the levels of acetylcoenzyme A (acetyl-CoA) and acetylcholine (ACh), and on the activities of pyruvate dehydrogenase, choline acetyl-transferase and acetylcholine esterase was studied in whole brains of thiamine-deficient, thiamine-supplemented ad libitum and pair-fed rats. The concentrations of acetyl-CoA and ACh decreased in thiamine-deficient brains by 42 and 35 per cent, respectively.
Total pyruvate dehydrogenase activity did not change during vitamin B1 deficiency. The 'resolved' enzyme, reconstituted with thiamine diphosphate, had an association constant of 5.4 × 10−6 m . Choline acetyltransferase and acetylcholine esterase activities remained unchanged in thiamine deficiency.
Possible mechanisms which could explain the reduced Ach levels in vitamin B1 deficiency are discussed.  相似文献   

7.
In the rat, neonatal asphyxia produced by suffocation did not leave permanent visible lesions in thc brain, nor did it result in permanent motor impairment, although a delay in the development of some reflexes was observed. A transient retardation of body and brain growth, which was more pronounced in males, was found. By 5-6 weeks of age, body and brain weights of asphyxiated rats were no longer significantly different from control animals. However, an increase in brain norepinephrine synthesis was found to persist after maturation. An alteration of serotonin metabolism was found after maturation only in asphyxiated males. The possibility that neonatal asphyxia in the rat is a model for abnormal development of monoamine metabolism, relevant to early childhood behavior disorders such as infantile autism or the syndrome of minimal brain dysfunction, is discussed.  相似文献   

8.
—Activities of acid phosphatase, alkaline phosphatase and β-glucuronidase have been estimated in the brain tissues, using various subcellular particles, in growing thyroidectomized rats and also using cytoplasmic extracts free from debris and nuclear fraction in young hypothyroid animals. Hepatic glucose-6-phosphate dehydrogenase activity was markedly reduced after thyroidectomy but the enzyme was brought back to normal levels by thyroxine treatment. There was no change, however, in the activity of neural glucose-6-phosphate dehydrogenase after thyroidectomy. In the thyroidectomized animals an increase only in the free acid phosphatase activity in the neural synaptosomes was found and this increase in activity was not counteracted by administration of thyroxine. In the hypothyroid young animal β-glucuronidase, acid phosphatase and alkaline phosphatase activities were found to be affected during development.  相似文献   

9.
—The utilization of citrate by the cytoplasmic fraction of rat brain is inhibited in hypoxia and remains unaltered in anaesthesia. The addition of exogenous aspartate to the cytosolic fraction isolated from brains of hypoxic animals increases the rate of citrate removal. The level of cytosolic aspartate gradually decreases when the exposure period to low oxygen tension is increased and reaches a minimum after 30 min. The levels of mitochondrial aspartate and of cytoplasmic carbamyl aspartate remain constant. The low level of cytosolic aspartate is accompanied by an increase in the concentration of cytosolic urea and increase in the aspartate level in blood serum. It is suggested that the oxidation of citrate by the cytoplasmic fraction of brain is inhibited in hypoxia owing to the decrease in endogenous aspartate. The decrease in the level of cytoplasmic aspartate is caused by the diversion of this substrate toward urea synthesis and by the increased leakage across the cell/blood barrier to the blood stream. Anaesthesia prevents the changes induced by hypoxia.  相似文献   

10.
—In growing rat brain, the specific activity of DNA at 12 h after the subcutaneous injection of [3H]thymidine underwent a sharp rise during the first 6 days of life, dropping just as precipitously by 15 days, thereafter continuing to decrease with increasing age. When [3H]thymidine was given to 6-day-old rats, a considerable amount was taken up immediately into the brain. Thymidine taken up into the acid-soluble fraction was readily phosphorylated to its nucleotides, thymidine mono-, di-, and triphosphate (TMP, TDP and TTP) within only 30 min following injection. The highest specific activity was found in TTP. The incorporation of of [3H]thymidine into DNA took place over a longer period of time after injection.  相似文献   

11.
Abstract— –The rates of incorporation of 14C from [U-l4C]glucose into intermediary metabolites have been measured in rat brain in vivo. The time course of labelling of glycogen was similar to that of glutamate and of glucose, which were all maximally labelled between 20 and 40min, but different from lactate, which lost radioactivity rapidly after 20min. The extent of labelling of glycogen (d.p.m./ μ mol of glucose) was of the same order as that of glutamate at 20 and 40 min after injection of [14C]glucose. However, calculations of turnover rates showed that glutamate turns over some 8-10 times faster than glycogen. Insulin, intracisternally applied, produced after 4-5 h a 60 per cent increase in glucose-6-P and a 50 per cent increase in glycogen. There was no change in the levels of glucose, glutamate or lactate, nor in the activity or properties of the particulate and soluble hexokinase of the brain. The injection of insulin affected neither the glycogen nor glucose contents of skeletal muscle from the same animals. The effects of insulin on the incorporation of l4C into the metabolites contrasted with its effects on their levels. The specific activities of glycogen and glucose were unchanged and there was a slight but non-significant increase in the specific activity of glutamate. The time course of incorporation into lactate was unaffected up to 20 min, but a significant delay in the loss of 14C after 20 min occurred as a result of the insulin injection. At 40 min, the specific activity of cerebral lactate was 60 per cent higher in insulin-treated animals than in control animals. The results are interpreted in terms of an effect of insulin on glucose uptake to the brain, with possibly an additional effect on a subsequent stage in metabolism, which involves lactate.  相似文献   

12.
(1) The inhibitor of γ-aminobutyrate transaminase (GABA-T), amino-oxyacetic acid (AOAA), drastically reduced the activity of GABA-T to 30 per cent of the control value, with a corresponding increase of brain GABA, but had no effect on the activity of glutamate decarboxylase (GAD). (2) The monoamine oxidase (MAO) inhibitors phenelzine, phenylpropylhydrazine and phenylvalerylhydrazine, lowered GABA-T activity to 58, 49 and 48 per cent, respectively; this was associated with a marked elevation of brain GABA. (3) The action of phenelzine and phenylpropylhydrazine in vivo and in vitro could be abolished by pre-treatment of the tissue with the structurally related MAO inhibitors phenylisopropylhydrazine and trans-2-phenylcyclopropylamine. These had no action on the GABA system in vivo, either on the GABA content or on the GABA-T activity. These latter drugs, however, were unable to influence the effects of AOAA either on GABA or on GABA-T. (4) The possible mechanism of action on GABA and the enzyme activities of the GABA system is discussed.  相似文献   

13.
—The subcutaneous administration of 2·0 mg DFP per kg to rats causes a diminution in the lysophosphatidylcholine content in the brain, which is followed by a decrease of glycerylphosphorylcholine concentration and by a reduced post mortem choline increase. This supports the hypothesis that a post mortem increase in choline is due to phosphatidylcholine breakdown. Since the amount of phosphatidylcholine in brains of di-isopropylfluorophosphate-treated rats increases, it is concluded that phospholipase A is inhibited by di-isopropylfluorophosphate, which corresponds to findings of other authors in vitro. The activity of glycerylphosphorylcholine diesterase (EC 3.1.4.2) is not altered.  相似文献   

14.
15.
THE EFFECT OF INJURY ON MONOAMINE CONCENTRATIONS IN THE RAT HYPOTHALAMUS   总被引:2,自引:0,他引:2  
Abstract— The monoamine concentrations have been measured in four regions of the brain (hypothalamus, cortex, cerebellum and brain stem) in rats injured by either hind-limb ischaemia or scald. Both injuries produced a rapid fall in the noradrenaline concentration of the hypothalamus which recovered slowly if the injury was not fatal. This effect of injury was seen after pretreatment with a-methyl-p-tyrosine to inhibit noradrenaline synthesis, indicating an increased rate of utilization of noradrenaline after injury. These injuries did not affect the 5-hydroxytryptamine concentration in the hypothalamus, but changes were found in the concentration of this monoamine and in that of its metabolite, 5-hydroxyindole acetic acid, in the brain stem. It is concluded that these forms of injury had specific effects on the brain monoamines. The hypothalamic changes were not secondary to changes in core temperature or to hypotension or hypovolaemia and they are discussed in relation to the impairment of temperature regulation seen in the injured rat.  相似文献   

16.
17.
Abstract—
  • 1 Breathing oxygen (1 atm.) for 2 hr increased the glycogen content of the rat brain from 3·38 to 4·35 μmoles glucosyl residues/g wet wt. At the same time the glucose and lactate concentrations were significantly decreased.
  • 2 Both under normal conditions and when breathing oxygen, the sum (glycogen + glucose) × 2 + lactate, with which the balance of carbohydrate breakdown and lactate formation was assessed, was 13·5 μmoles/g wet wt.
  • 2 Oxygen breathing effected a significant decrease in this sum after an ischaemic period of 1–15 min. In the control group breathing normal air, the sum, after all periods of ischaemia, ranged from 98 to 106 per cent of the starting value.
  • 3 An increased partial pressure of oxygen did not change the breakdown rate of the high-energy phosphate compounds. This result was not consistent with an oxidation of the carbohydrates which were missing in the balance. It is probable that other metabolites, which were not tested for, accumulated.
  • 5 0 We failed to find any indication of storage of oxygen which the ischaemic brain could use for oxidative energy production.
  相似文献   

18.
Abstract— The effect of increased exposure to ketone bodies in the developing rat brain suggest that intrauterine and postnatal hyperketonemia lead to an altered metabolism of glutamine and glutamate. It is postulated that this effect is related to the delayed development of glutaminase ( l -glutamine amido-hydrolase EC 3.5.1.2) and glutamate dehydrogenase ( l -glutamate: NAD oxidoreductase EC 1.4.1.2).
The specific activities of glutamate dehydrogenase (GDH), glutaminase and glutamine synthetase ( l -glutamate: ammonia ligase EC 6.3.1.2) in the brains of newborn rats increased during early development. A positive correlation was observed between the specific activity of glutaminase and the concentration of glutamate in the brain as well as between the concentrations of blood and brain glutamine and glutamate in both control and hyperketonemic pups. This indicates a different degree of permeability and metabolism for glutamine and glutamate in the brain during the neonatal period, as compared to adulthood.
In hyperketonemic pups, glutamine and glutamate metabolism were found to differ from that in control animals. The concentrations of glutamate were higher, and glutamine lower, in both the blood and brain as compared to that in controls. The concentrations of α-ketoglutarate were also lower in their brain. In the brains of hyperketonemic and control pups, the concentration of malate was the same. During the first 3 weeks of life the increase of spec. act. of GDH and glutaminase was found to be suppressed in the brains of hyperketonemic pups. However, the spec. act. of glutamine synthetase was similar to that of the control pups.  相似文献   

19.
—The role of the pentose phosphate pathway in brain glucose metabolism was studied in hypoxic rats. The method of directly labelling the 6-phosphogluconate pool was used in both in vivo and in vitro experiments. Results indicate that there is significantly more glucose metabolized via this pathway in brains of hypoxic rats than in the controls.  相似文献   

20.
HISTOCHEMISTRY OF MONOAMINE OXIDASE IN THE DEVELOPING RAT BRAIN   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号