首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
植物中活性氧的产生及清除机制   总被引:146,自引:1,他引:145  
环境胁迫使植物细胞中积累大量的活性氧,从而导致蛋白质、膜脂、DNA及其它细胞组分的严重损伤。植物体内有效清除活性氧的保护机制分为酶促和非酶促两类。酶促脱毒系统包括超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPX)等。非酶类抗氧化剂包括抗坏血酸、谷胱甘肽、甘露醇和类黄酮。利用基因工程策略增加这些物质在植物体内的含量,从而获得耐逆转基因植物已取得一定的进展。  相似文献   

2.
活性氧作为有氧代谢的副产物不断在植物体内产生。在正常的生长环境条件下,植物将产生活性氧(reaction oxygen species, ROS)作为信号代谢分子以调控不同的代谢反应,例如病毒防御、细胞程序性死亡和气孔开闭等;当氧化胁迫发生时,胞内活性氧稳态受到严重破坏,影响作物的生长发育,从而降低作物产量及品质。为了降低因过量活性氧对植物体所造成的伤害,植物体内进化出了两种活性氧清除系统:酶清除系统和非酶清除系统。本文就此对植物在生长发育过程中ROS的产生、利弊、清除机制以及在作物改良上应用的可能性进行了系统的讨论。  相似文献   

3.
植物谷胱甘肽过氧化物酶研究进展   总被引:2,自引:0,他引:2  
苗雨晨  白玲  苗琛  陈珈  宋纯鹏 《植物学报》2005,22(3):350-356
氧化胁迫可诱导植物多种防御酶的产生, 其中包括超氧化物歧化酶(SOD, EC1.15.1.1)、抗坏血酸过氧化物酶(APX, EC1.11.1.11)、过氧化氢酶(CAT, E.C.1.11.1.6 )和谷胱甘肽过氧化物酶(GPXs,EC1.11.1.9)。它们在清除活性氧过程中起着不同的作用。GPXs是动物体内清除氧自由基的主要酶类,但它在植物中的功能报道甚少。最近几年研究表明, 植物体内也存在类似于哺乳动物的GPXs家族, 并对其功能研究已初见端倪。本文综述了有关GPXs的结构以及植物GPXs功能的研究进展。  相似文献   

4.
植物谷胱甘肽过氧化物酶研究进展   总被引:18,自引:1,他引:18  
氧化胁迫可诱导植物多种防御酶的产生,其中包括超氧化物歧化酶(SOD,EC1.15.L1)、抗坏血酸过氧化物酶(APX,EC1.11.1.11)、过氧化氢酶(CAT,E.C.1.11.1.6)和谷胱甘肽过氧化物酶(GPXs,EC1.11.1.9).它们在清除活性氧过程中起着不同的作用.GPXs是动物体内清除氧自由基的主要酶类,但它在植物中的功能报道甚少.最近几年研究表明,植物体内也存在类似于哺乳动物的GPXs家族,并对其功能研究已初见端倪.本文综述了有关GPXs的结构以及植物GPXs功能的研究进展.  相似文献   

5.
外源乙烯在一定的条件下明显抑制了超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的活性,提高了超氧化物阴离子自由基和过氧化氢(H2O2)的产率,从而有效地诱导了内源乙烯产生的增加;外源和H2O2对乙烯产生的促进作用及外源活性氧清除剂对乙烯产生的抑制作用也为此提供了证明。乙烯对植物生理过程的调节机制之一就是通过影响活性氧清除酶活性,从而调节各种活性氧在体内的平衡。  相似文献   

6.
青菜幼苗体内几种保护酶的活性对Pb、Cd、Cr胁迫的反应研究   总被引:32,自引:2,他引:32  
1 引言自从McCord在1969年第一次从牛红血细胞中发现超氧化物歧化酶(SOD)并且证明其功能是清除超氧化物以后,研究者们在植物细胞中也发现了这种酶,并且证明具有同样的功能.后来又发现植物细胞通过多种途径产生活性氧自由基,同时细胞也存在清除这些自由基的多种途径[5],两者形成平衡体系.但是,许多逆境因子如寒冷、干旱、干燥、水淹、重金属Al等都能影响植物体内活性氧代谢系统的平衡,产生大量的氧自由基,它们能够启动膜脂过氧化或膜脂脱脂作  相似文献   

7.
以球等鞭金藻为材料,研究生长抑制物GI对藻细胞生长、超氧化物歧化酶(superoxide dismutase,SOD)、过氧化物酶(peroxidase,POD)活性和丙二醛(malondialdehyde,MDA)含量的影响;同时研究4种抗氧化剂(抗坏血酸、柠檬酸、乙二胺四乙酸二钠和3-叔丁基-4-羟基-苯甲醚)对GI抑制效应的抵制作用.结果表明,0.10mg/LGI处理组藻细胞密度、SOD和POD活性明显低于对照组,而MDA含量明显高于对照组.且随着GI浓度的继续增大,细胞密度、SOD和POD活性急剧降低,而MDA含量进一步升高.GI浓度为0.30mg/L时,处理组藻细胞密度、SOD和POD活性以及MDA含量分别为对照组藻细胞密度的0.05倍、SOD活性的0.56倍、POD活性的0.59倍和MDA含量的2.2倍.4种抗氧化剂均能有效地抵制GI对藻细胞的抑制效应,使细胞密度、SOD活性和POD活性提高,MDA含量降低.添加抗氧化剂处理组的藻细胞密度为对照组细胞密度的1.38~1.90倍、SOD和POD活性分别为对照组活性的1.49~2.12倍和1.55~2.13倍,而MDA含量比对照组含量降低57.7%~87.9%.生长抑制物的胁迫使球等鞭金藻细胞体内积累了过量的活性氧,而抗氧化剂通过清除藻细胞体内积累的活性氧,减轻了膜脂过氧化伤害,从而抵制了生长抑制物对藻细胞的抑制效应.  相似文献   

8.
低温胁迫对嫁接西瓜耐冷性和活性氧清除系统的影响   总被引:50,自引:5,他引:50  
研究了西瓜实生苗和以黑籽南瓜、超丰F1为砧木的嫁接苗的耐冷性及活性氧清除系统的差异.结果表明,低温胁迫下,嫁接苗的耐冷性明显高于实生苗,表现为以黑籽南瓜为砧木的嫁接苗的耐冷性>以超丰F1为砧木的嫁接苗>实生苗,此外嫁接苗和实生苗均表现为叶片中叶绿素含量下降,丙二醛(MDA)含量上升,非酶促抗氧化剂抗坏血酸(AsA)、谷胱甘肽(GSH)含量和抗氧化酶超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(AsA-POD)、脱氢抗坏血酸还原酶(DR)活性下降,说明低温逆境降低了植物体防御活性氧有关的酶促和非酶促保护系统能力,提高了体内自由基浓度,加剧了膜脂过氧化.嫁接苗的活性氧清除能力均高于自根苗,且嫁接苗中耐冷性越强的活性氧清除能力越高,说明西瓜嫁接后耐冷性的提高是与植物体内活性氧清除系统中抗氧化剂含量和抗氧化酶活性提高有关。  相似文献   

9.
植物谷胱甘肽过氧化物酶(GPX)研究进展   总被引:1,自引:0,他引:1  
逆境胁迫会诱导植物产生过多的活性氧(ROS),引起氧化胁迫,严重影响其生长发育。相应地,植物为适应诸多不良环境会产生多种抗氧化剂、抗氧化酶等协调氧化还原平衡,其中谷胱甘肽过氧化物酶(glutathione peroxidase,GPX)是植物体内重要的抗氧化酶之一。对近年来植物中GPX的结构、亚细胞定位、酶催化底物特点及作用研究进展进行综述,并对未来可能的研究方向进行展望。  相似文献   

10.
植物超氧化物歧化酶(SOD)的研究进展   总被引:112,自引:0,他引:112  
马旭俊  朱大海 《遗传》2003,25(2):225-231
超氧化物歧化酶(superoxide dismutase,SOD)在需氧原核生物和真核生物中广泛存在,是活性氧清除系统中第一个发挥作用的抗氧化酶。植物正常代谢过程和在各种环境胁迫下均能产生活性氧和自由基,活性氧和自由基的积累引起细胞结构和功能的破坏。SOD岐化超氧物阴离子自由基生成过氧化氢和分子氧,在保护细胞免受氧化损伤过程中具有十分重要的作用。本文综述了SOD的功能、在细胞中的分布、表达调控和与植物抗逆性的关系。 Abstract:Superoxide Dismutases (SODs) are ubiquitously expressed antioxidant enzyme in aerobic organisms and catalyze dismutation of superoxide anion to hydrogen and molecular oxygen,the first step in active oxygen-scavenging systems.SODs play a central role in protecting cells against the toxic effects of reactive oxygen species generated during normal cellular metabolic activity or as a result of various environmental stresses.This paper reviews the expression and regulation of Sod genes and their functional role(s) during development and in response to stresses.  相似文献   

11.
Reactive oxygen species (ROS), including superoxide anions, hydrogen peroxide and hydroxyl radicals are generated through normal biochemical processes, but their production is increased by abiotic stresses. The prospects for enhancing ROS scavenging, and hence stress tolerance, by direct gene expression in a vulnerable cell compartment, the chloroplast, have been explored in tobacco. Several plastid transformants were generated which contained either a Nicotiana mitochondrial superoxide dismutase (MnSOD) or an Escherichia coli glutathione reductase (gor) gene. MnSOD lines had a three-fold increase in MnSOD activity, but interestingly a five to nine-fold increase in total chloroplast SOD activity. Gor transgenic lines had up to 6 times higher GR activity and up to 8 times total glutathione levels compared to wild type tobacco. Photosynthetic capacity of transplastomic plants, as measured by chlorophyll content and variable fluorescence of PSII was equivalent to non-transformed plants. The response of these transplastomic lines to several applied stresses was examined. In a number of cases improved stress tolerance was observed. Examples include enhanced methyl viologen (Paraquat)-induced oxidative stress tolerance in Mn-superoxidase dismutase over-expressing plants, improved heavy metal tolerance in glutathione reductase expressing lines, and improved tolerance to UV-B radiation in both sets of plants.  相似文献   

12.
13.
Salinity influences the agricultural production all over the world. This constrain, similar to others biotic and abiotic stresses generate the reactive oxygen species such as superoxide, hydrogen peroxide and hydroxyl radicals. In the evolution process of halophyte plants the mechanisms to detoxify ROS, such as antioxidant enzymes, have been developed. Aeluropus littoralis is a special halophyte that selected to our research, so the plants treated with NaCl at different salt concentration (0, 250, 450 and 650 mM) for a period 45 days. Leaves and roots (separately) collected and their proteins extracted for superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) activity assay. Meanwhile the electrolyte leakage of leaves analyzed and increased at 450 and 650 mM of NaCl concentrations. Superoxide dismutase and catalase showed same pattern for changing in enzymatic activities (increasing activity by salt stress in roots and decreasing in shoot at 450 and 650 mM stress), also peroxidase and ascorbate peroxidase activity almost increased in all stress conditions.  相似文献   

14.
Although plant glutathione transferase (GST) genes are reported to be involved in responses to abiotic stress, few GST genes have been functionally characterized in woody halophytes. In the present study, a GST gene from Tamarix hispida, designated ThGSTZ1, was cloned and functionally characterized. Expression of ThGSTZ1 was downregulated by drought and salinity stress, and abscisic acid. Transgenic Arabidopsis thaliana plants with constitutive expression of ThGSTZ1 showed increased survival rates under drought and salinity stress. These transgenic Arabidopsis plants exhibited increased levels of GST, glutathione peroxidase, superoxide dismutase and peroxidase activity, along with decreased malondialdehyde content, electrolyte leakage rates and reactive oxygen species (ROS) levels under salt and drought stress conditions. Transgenic T. hispida that transiently overexpressed ThGSTZ1 showed increased GST and GPX activities under NaCl and mannitol treatments, as well as improved ROS scavenging ability. These results suggest that ThGSTZ1 can improve drought and salinity tolerance in plants by enhancing their ROS scavenging ability. Therefore, ThGSTZ1 represents a candidate gene with potential applications for molecular breeding to increase stress tolerance in plants.  相似文献   

15.
Plant growth-promoting endophytic bacteria can stimulate the growth, nutrient acquisition, symbiotic performance and stress tolerance of chickpea plants under saline soil conditions. The aim of this study was to investigate the stress-adaptive mechanisms of chickpea plants mediated by Bacillus subtilis (BERA 71) under saline conditions. Inoculation with BERA 71 enhanced plant biomass and the synthesis of photosynthetic pigments and reduced the levels of reactive oxygen species (ROS) and lipid peroxidation in plants under conditions of stress. Furthermore, the activities of ROS-scavenging antioxidant enzymes (superoxide dismutase, peroxidase, catalase and glutathione reductase), the levels of non-enzymatic antioxidants (ascorbic acid and glutathione) and the total phenol content were increased in stressed plants during bacterial association. The bacteria decreased sodium accumulation and enhanced the nitrogen, potassium, calcium and magnesium content in the plants. The suppression of ROS generation and of lipid peroxidation and the accumulation of proline in BERA-71-inoculated plants enhanced the membrane stability under salinity stress and non-stress conditions.  相似文献   

16.
臭氧胁迫对大豆叶片抗坏血酸-谷胱甘肽循环的影响   总被引:4,自引:1,他引:3  
王俊力  王岩  赵天宏  曹莹  刘玉莲  段萌 《生态学报》2011,31(8):2068-2075
由于城市化的加剧导致近地面臭氧(O3)浓度日益增加,对植物生长和生态系统的功能产生了显著影响,因此准确评估近地层O3浓度升高对植物的影响具有重要意义。本文利用开顶式气室(OTCs),系统探讨了模拟O3胁迫下大豆抗氧化系统抗坏血酸(AsA)-谷胱甘肽(GSH)循环清除活性氧(ROS)的机制及其对植株生长发育的影响。结果表明,在整个生育期内,与对照相比, 80?10 nL?L-1和110?10 nL?L-1 O3可以使大豆叶片丙二醛(MDA)含量、相对电导率增大,超氧阴离子(O2 )产生速率、过氧化氢(H2O2)含量升高,超氧化物歧化酶(SOD)活性减弱; AsA-GSH循环中的AsA、GSH含量减少,脱氢抗坏血酸(DHA)、氧化型谷胱甘肽(GSSG)含量增加,过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDHAR)、谷胱甘肽还原酶(GR)活性呈现出前期增强后期减弱趋势,而脱氢抗坏血酸还原酶(DHAR)活性呈现出增强-减弱-增强的趋势。以上结果说明,O3浓度升高促进了大豆叶片ROS的代谢速率,降低了AsA-GSH循环效率,表明抗氧化系统不能长时间忍受高浓度O3带来的氧化伤害,从而使膜脂过氧化程度加重,对大豆表现为伤害效应。  相似文献   

17.
This work deals with the antioxidant enzymatic response and the ultrastructural aspects of the skeletal muscle of young and aged rats kept under hypoxic or hyperoxic normobaric conditions. It is in fact well known that the supply of oxygen at concentrations higher or lower than those occurring under normal conditions can promote oxidative processes that can cause tissue damage. The enzymes investigated were both those directly involved in reactive oxygen species (ROS) scavenging (superoxide dismutase, catalase and selenium-dependent glutathione peroxidase), and those challenged with the detoxication of cytotoxic compounds produced by the action of ROS on biological molecules (glutathione transferase, glyoxalase I, glutathione reductase), in order to obtain a comparative view of the defence strategies used with respect to aging. Our results support the hypothesis that one of the major contributors to the aging process is the oxidative damage produced at least in part by an impairment of the antioxidant enzymatic system. This makes the aged organism particularly susceptible to oxidative stress injury and to the related degenerative diseases, especially in those tissues with high demand for oxidative metabolism.  相似文献   

18.
Endophytic bacteria have been shown to increase resistance against biotic stress and tolerance to abiotic stress in many plants. The objective of this study was to evaluate the effect of an endophytic bacterium, Clavibacter sp. strain Enf12, in regenerated plantlets of Chorispora bungeana subjected to chilling stress (0°C). Aerial biomass and physiological markers for chilling stress, such as electrolyte leakage, lipid peroxidation, reactive oxygen species (ROS) accumulation, proline content and activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), guaiacol peroxidase (EC 1.11.1.7) and ascorbate peroxidase (EC 1.11.1.11), were assessed. We demonstrated that Clavibacter sp. strain Enf12 was capable of colonizing internal tissues of regenerated plantlets of C. bungeana and maintained stable population densities under both normal (20°C) and chilling (0°C) conditions. Inoculation enhanced plantlet growth under both conditions and significantly attenuated the chilling-induced electrolyte leakage, lipid peroxidation and ROS accumulation. The endophyte significantly increased the activities of antioxidant enzymes and proline content in C. bungeana plantlets under chilling stress. These findings suggest that Clavibacter sp. strain Enf12 inoculation stimulates the growth of C. bungeana plantlets and improves their tolerance to chilling stress through enhancing the antioxidant defense system.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号