首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A kinetic analysis of the tyrosine-specific protein kinase of pp60c-src from the C1300 mouse neuroblastoma cell line Neuro-2A and pp60c-src expressed in fibroblasts was carried out to determine the nature of the increased specific activity of the neuroblastoma enzyme. In immune-complex kinase assays with ATP-Mn2+ and the tyrosine-containing peptide angiotensin I as phosphoacceptor substrate, pp60c-src from the neuroblastoma cell line was characterized by a maximum velocity (Vmax.) that was 7-15-fold greater than the Vmax. of pp60c-src from fibroblasts. The neuroblastoma enzyme exhibited Km values for ATP (16 +/- 3 microM) and angiotensin I (6.8 +/- 2.6 mM) that were similar to Km values for ATP (25 +/- 3 microM) and angiotensin I (6.5 +/- 1.7 mM) of pp60c-src from fibroblasts. pp60v-src expressed in Rous-sarcoma-virus-transformed cells exhibited an ATP Km value (25 +/- 4 microM) and an angiotensin I Km value (6.6 +/- 0.5 mM) that approximated the values determined for pp60c-src in neuroblastoma cells and fibroblasts. These results indicate that the pp60c-src kinase from neuroblastoma cells has a higher turnover number than pp60c-src kinase from fibroblasts, and that the neural form of the enzyme would be expected to exhibit increased catalytic activity at the saturating concentrations of ATP that are found intracellularly.  相似文献   

2.
The transforming protein of polyoma virus, middle T antigen, associates with two cellular enzymes, pp60c-src, a protein tyrosine kinase, and a phosphatidylinositol kinase that forms phosphatidylinositol 3-phosphate. The formation of a ternary complex of these proteins is essential for complete transformation and maximal tumor induction by the virus. A mutant virus encoding an altered middle T protein that activates pp60c-src but fails to bind phosphatidylinositol kinase is partially defective in transformation. We have confirmed, using an enzymological method, that the product of the in vitro reaction catalyzed by middle T-pp60c-src-phosphatidylinositol kinase complexes is phosphatidylinositol 3-phosphate (PtdIns(3)P), as previously reported (Whitman, M., Downes, C. P., Keeler, M., Keller, T., and Cantley, L. (1988) Nature 332, 644-646). PtdIns(3)P is present in normal as well as virus-infected and transformed cells at levels ranging from 0.6 to 2.6% of the major phosphatidylinositol phosphate isomer, phosphatidylinositol 4-phosphate (PtdIns(4)P). Steady-state levels of PtdIns(3)P do not appear to be affected by the expression of middle T in cells. PtdIns(3)P is not hydrolyzed by bovine brain phospholipase C II, which readily cleaves PtdIns(4)P and other phosphatidylinositols. This result underscores the likelihood that the metabolism of PtdIns(3)P is distinct from that of PtdIns(4)P and raises further questions regarding a possible role of PtdIns(3)P in normal and neoplastic cell growth.  相似文献   

3.
Bovine brain contains two types of phosphatidylinositol kinase   总被引:7,自引:0,他引:7  
G Endemann  S N Dunn  L C Cantley 《Biochemistry》1987,26(21):6845-6852
Two phosphatidylinositol (PI) kinases from bovine brain were separated by rate zonal sucrose gradient centrifugation of detergent-solubilized membranes. Of the total PI kinase activity, 43% migrates on sucrose gradients with a size of approximately 55 kilodaltons (kDa); this kinase has properties similar to one of two PI kinase activities characterized in fibroblasts [Whitman, M., Kaplan, D. R., Roberts, T., & Cantley, L. (1987) Biochem. J. (in press)] and has been termed type 2. The remainder of the activity migrates in a second peak with a size of approximately 230 kDa. This enzyme possesses properties which are unlike both fibroblast PI kinase activities and has been termed type 3. The type 2 and type 3 enzymes have very different affinities for adenine nucleotides and are readily distinguishable by their sensitivities to inhibition by adenosine. The KMs of types 2 and 3 kinases for ATP are 54 and 742 microM, and the Kis for adenosine are 18 and 1520 microM, respectively. The two enzymes also differ in their affinities for PI, phosphatidylinositol 4-phosphate, and Mg2+ as well as in stimulation and inhibition by other phospholipids. When PI kinase from erythrocyte ghosts is fractionated by sucrose gradient centrifugation, only one peak of activity is observed which is indistinguishable from brain type 2 PI kinase.  相似文献   

4.
We have studied the phosphatidylinositol 3-kinase (PtdIns 3-kinase) in insulin-stimulated Chinese hamster ovary (CHO) cells expressing normal (CHO/IR) and mutant human insulin receptors. Insulin stimulation of CHO/IR cells results in an increase in PtdIns 3-kinase activity associated with anti-phosphotyrosine (alpha PY) immunoprecipitates, which has been previously shown to correlate with the in vivo production of PtdIns(3,4)P2, and PtdIns(3,4,5)P3 (Ruderman, N., Kapeller, R., White, M.F., and Cantley, L.C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1411-1415). Stimulation was maximal within 1 min and showed a dose response identical to that of insulin receptor autophosphorylation. The PtdIns 3-kinase also associated with the insulin receptor in an insulin-stimulated manner, as approximately 50% of the total alpha PY-precipitable activity could be specifically immunoprecipitated with anti-insulin receptor antibody. Mutant insulin receptors displayed variable ability to stimulate the PtdIns 3-kinase, but in all cases the presence of PtdIns 3-kinase in alpha PY immunoprecipitates correlated closely with the tyrosyl phosphorylation of the endogenous substrate pp185. In CHO cells expressing a kinase-deficient mutant (IRA1018), there was no observable insulin stimulation of PtdIns 3-kinase activity in alpha PY immunoprecipitates and no tyrosyl phosphorylation of pp185. Substitution of Tyr1146 in the insulin receptor regulatory region with phenylalanine partially impaired receptor autophosphorylation, pp185 phosphorylation, and insulin-stimulated increases in alpha PY-precipitable PtdIns 3-kinase activity. In contrast, a deletion mutant lacking 12 amino acids from the juxtamembrane region (IR delta 960) displayed normal in vivo autophosphorylation but failed to stimulate the PtdIns 3-kinase or phosphorylate pp185. Finally, a mutant receptor from which the C-terminal 43 amino acids had been deleted (IR delta CT) exhibited normal insulin-stimulated autophosphorylation, pp185 phosphorylation, and stimulation of the PtdIns 3-kinase activity in alpha PY immunoprecipitates. These data suggest that the PtdIns 3-kinase is itself a substrate of the insulin receptor kinase or associates preferentially with a substrate. A comparison of the biological activities of the mutant receptors with their activation of the PtdIns 3-kinase furthermore suggests that the PtdIns 3-kinase may be linked to insulin's ability to regulate DNA synthesis and cell growth.  相似文献   

5.
Reconstitution of the polyoma virus middle T antigen (mT)-pp60-src complex and phosphatidylinositol 3-kinase (PtdIns 3-kinase) has been accomplished in vitro with immunopurified baculovirus-expressed mT-pp60c-src and PtdIns 3-kinase purified from rat liver. Both the 110- and 85-kDa subunits of the PtdIns 3-kinase associated with the mT-pp60c-src complex. The association of PtdIns 3-kinase with the mT-pp60c-src complex was dependent on the protein-tyrosine kinase activity of pp60c-src as a kinase-inactive mutant (pp60(295c-src)) still complexed with mT, but the mT-pp60(295c-src)) complex was unable to bind PtdIns 3-kinase. The mT-pp60c-src complex phosphorylated both subunits of PtdIns 3-kinase on tyrosine residues. The immunopurified mT-pp60c-src complex also associated with PtdIns 3-kinase activity from whole cell lysates, and this association was dependent upon the protein-tyrosine kinase activity of pp60c-src. Comparison of 35S-labeled proteins from whole cell lysates which associated with immunopurified mT-pp60c-src and mT-pp60(295c-src) revealed proteins of 110 and 85 kDa as the major peptides dependent on protein-tyrosine kinase activity for association with the complex. In addition, a synthetic phosphopeptide (13-mer) containing sequences conserved between the major tyrosine phosphorylation site of murine polyoma virus mT, hamster polyoma virus mT, and the insulin receptor substrate (IRS-1) specifically blocked the association of the 85- and 110-kDa polypeptides with the mT-pp60c-src complex. The ability to block the association was dependent on the tyrosine phosphorylation of the peptide. Association of PtdIns 3-kinase activity was blocked concurrently. This is the first demonstration that the 110-kDa subunit of PtdIns 3-kinase can associate with mT-pp60c-src. This association in vitro is a step toward understanding protein-protein interactions important in the signal transduction pathway of oncogenic proteins.  相似文献   

6.
The transforming protein of polyomavirus, middle T (mT), forms a complex with two cellular enzymes: the protein tyrosine kinase pp60c-src and a phosphatidylinositol (PtdIns) 3-kinase. A mutant virus, Py1178T, encodes an mT protein which associates with and activates pp60c-src to the same extent as the wild type but fails to associate with PtdIns 3-kinase. To investigate relationships between activation of pp60c-src, association of PtdIns 3-kinase, and cellular levels of the second messenger inositol 1,4,5-trisphosphate (InsP3), we examined the effects of wild-type and mutant mT proteins on inositol metabolism in rat and mouse fibroblasts. Expression of either wild-type or 1178T mT caused a 300 to 500% increase in the InsP3 level. Cells transformed by Rous sarcoma virus also showed similar increases in InsP3 levels. Mutant mT proteins which failed to activate pp60c-src (NG59 and 1387T) had no effect on InsP3 levels. Pulse-chase experiments with [3H]inositol showed that the turnover of phosphoinositides was increased in cells transformed by either wild-type polyomavirus or Py1178T as compared with the normal parent cell line. The turnover of inositol phosphates was unchanged upon transformation. These data indicate that cells expressing either wild-type or mutant 1178T mT or pp60v-src exhibit elevated levels of InsP3 because of activation of phospholipase C. This activation appears to depend, directly or indirectly, upon activation of pp60src protein kinase activity. Activation of pp60c-src and elevation of InsP3 content are not sufficient for full transformation. Full transformation also requires the association of mT-pp60c-src complexes with PtdIns 3-kinase.  相似文献   

7.
A phosphoinositide kinase that can phosphorylate phosphatidylinositol (PtdIns) is present in 4G10 monoclonal antibody (mAb) phosphotyrosine immunoprecipitates isolated from T cells activated via the T cell antigen receptor (TCR).CD3 complex. This PtdIns kinase is not the PtdIns 3-kinase that associates with activated protein tyrosine kinases in fibroblasts, since Western blotting and immunoprecipitation experiments with antibodies specific for the p85 alpha subunit of the PtdIns 3-kinase indicate that this polypeptide is not immunoprecipitated by the 4G10 mAb from TCR.CD3-activated Jurkat cells. Moreover, immunoprecipitated PtdIns 3-kinase isolated from T cells with p85 antibodies is inhibited when PtdIns is presented in Nonidet P-40, whereas the PtdIns kinase activity present in 4G10 mAb phosphotyrosine immunoprecipitates is enhanced in the presence of Nonidet P-40. In vitro kinase assays of PtdIns 3-kinase immunoprecipitated with p85 antibodies from T cells indicate that it associates with a serine kinase that can phosphorylate a p85 polypeptide. However, no protein tyrosine kinase activity capable of tyrosine phosphorylating p85 in vitro associates with p85 alpha immunoprecipitates in quiescent or TCR.CD3-activated T cells. These data suggest that the TCR.CD3 complex does not regulate PtdIns 3-kinase activity by a mechanism that involves protein tyrosine kinases.  相似文献   

8.
We have examined the interaction between the platelet-derived growth factor (PDGF) receptor and three src family tyrosine kinases, pp60c-src, p59fyn, and pp62c-yes. The kinase activities of all three enzymes were elevated after PDGF stimulation of quiescent fibroblasts, coincident with association of the src family kinases with the PDGF receptor and other proteins. The presence of a protein of 81-85 kd in these complexes correlated with the detection of phosphatidylinositol (PI) kinase activity (previously described to associate with both the PDGF receptor and pp60c-src-middle T antigen). These results suggest that the physiological response to PDGF involves interaction of the receptor not only with serine/threonine and lipid kinases and a phospholipase, but also with other tyrosine kinases.  相似文献   

9.
We have constructed a recombinant murine retrovirus which efficiently transduces avian pp60c-src into murine cells and which is easily rescued from infected cells in plasmid form. To characterize the virus, several randomly selected NIH 3T3 lines were isolated after infection with recombinant retroviral stocks. All lines overproduced avian pp60c-src and appeared morphologically normal. Immunoprecipitates made from these lines with antisera specific for pp60c-src were tested for their kinase activities in vitro. We find that both autokinase and enolase kinase activities increase proportionately with the level of pp60c-src in the immunoprecipitates. To further test the authenticity of the pp60c-src encoded by the retroviral vector, these analyses were repeated in the presence of polyomavirus middle T antigen. Avian pp60c-src was activated as a protein kinase, indicating that the virally encoded pp60c-src interacts normally with middle T antigen. Interestingly, by increasing the intracellular levels of pp60c-src 15-fold over normal endogenous levels, we were unable to obtain a proportionate increase in the amount of middle-T-antigen-pp60c-src complex. Finally, using the shuttle features designed into the vector, we have isolated the first fully processed cDNA encoding functional avian pp60c-src X pp60c-src synthesized in vitro with this cDNA had intrinsic protein kinase activity and no detectable phosphatidylinositol kinase activity.  相似文献   

10.
Immunoprecipitates of p60v-src proteins from chicken embryo fibroblasts infected with Rous sarcoma virus were assayed for phosphatidylinositol (PI) kinase activity in the absence of detergents. The product of the PI kinase reaction, phosphatidylinositol monophosphate (PIP), migrated slightly slower than did the authentic phosphatidylinositol-4-monophosphate marker in thin-layer chromatography and was indistinguishable from phosphatidylinositol-3-monophosphate produced by PI kinase type I. Furthermore, the deacylated product comigrated with glycerophosphoinositol-3-phosphate in high-performance liquid chromatography. Both sucrose gradient fractionation and the heat stability of PI kinase activity from cells infected with temperature-sensitive mutants suggest that the PI kinase activity is not intrinsic to p60v-src but is a property of another molecule complexed with p60v-src. All transforming variants of p60src were associated with PI kinase activity, whereas this enzyme activity was hardly detectable in immunoprecipitates from cells infected with nontransforming viruses encoding p60c-src or an enzymatically inactive variant. However, PI kinase activity was found in p60src immunoprecipitates from cells infected with nonmyristylated, nontransforming mutants as well as temperature-sensitive mutants at the nonpermissive temperature, which indicated that simple association of PI kinase activity with p60src is not sufficient for cell transformation.  相似文献   

11.
Purification and characterization of phosphoinositide 3-kinase from rat liver   总被引:64,自引:0,他引:64  
Phosphoinositide 3-kinase was purified 27,000-fold from rat liver. The enzyme was purified by acid precipitation of the cytosol followed by chromatography on DEAE-Sepharose, S-Sepharose, hydroxylapatite, Mono-Q, and Mono-S columns. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified phosphoinositide 3-kinase preparation contained an 85-kDa protein and a protein doublet of approximately 110 kDa. The 85- and 110-kDa proteins focus together on native isoelectric focusing gels and are cross-linked by dithiobis(succinylamide propionate), showing that the 110- and 85-kDa proteins are a complex. The apparent size of the native enzyme, as determined by gel filtration, is 190 kDa. The 85-kDa subunit is the same protein previously shown to associate with polyoma virus middle T antigen and the platelet-derived growth factor receptor (Kaplan, D. R., Whitman, M., Schaffhausen, B., Pallas, D. C., White, M., Cantley, L., and Roberts, T. M. (1987) Cell 50, 1021-1029). The two proteins co-migrate on two-dimensional gels; and, using a Western blotting procedure, 32P-labeled middle T antigen specifically blots the 85-kDa protein. The purified enzyme phosphorylates phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate. The apparent Km values for ATP were found to be 60 microM with phosphatidylinositol 4-phosphate or phosphatidylinositol 4,5-bisphosphate as the substrate. The apparent Km for phosphatidyinositol is 60 microM, for phosphatidylinositol 4-phosphate is 9 microM, and for phosphatidylinositol 4,5-bisphosphate is 4 microM. The maximum specific activity using phosphatidylinositol as the substrate is 0.8 mumol/mg/min. The enzyme requires Mg2+ with an optimum of 5 mM. Substitution of Mn2+ for Mg2+ results in only approximately 10% of the Mg2(+)-dependent activity. Physiological calcium concentrations have no effect on the enzyme activity. Phosphoinositide 3-kinase has a broad pH optimum around 7.  相似文献   

12.
Recently, we reported that pp60c-src kinase activity was present in adult bovine coronary arterial smooth muscle and showed that the activity of the enzyme in in vitro immunoprecipitation assays was stimulated 20-60-fold by ATP (Di Salvo, J., Gifford, D., and Kokkinakis, A. (1988) Biochem. Biophys. Res. Commun. 153, 388-394). In the present study, ATP-mediated stimulation of activity was also demonstrated in extracts from aortic vascular smooth muscle. In contrast, no stimulation was apparent in extracts from brain. Stimulation of activity in vascular preparations was also induced with beta,gamma-imidoadenosine 5'-triphosphate (AMP.PNP), a nonmetabolizable analog of ATP, and with several other polyphosphates including ADP and sodium pyrophosphate. No stimulation occurred in response to monophosphates such as AMP or KH2PO4. As expected, the specific activity of pp60c-src in brain extracts did not change when the amount of extracted protein included in immunoprecipitation mixtures was increased. Unexpectedly, however, the specific activity of the vascular enzyme decreased markedly as the amount of extracted protein subjected to immunoprecipitation was increased. Following stimulation of pp60c-src in vascular extracts with ATP, the enzyme behaved in a fashion similar to pp60c-src extracted from brain. That is, the enhanced specific activity of the stimulated vascular enzyme did not decrease with increasing amounts of extracted protein. Moreover, mixing experiments in which vascular smooth muscle extracts were added to brain extracts showed that the muscle extracts contained a factor which inhibited pp60c-src kinase activity. This inhibition was blocked when the mixed extracts were immunoprecipitated in the presence of ATP, or when inhibitory extract was treated with trypsin. Taken together, these data suggest that pp60c-src kinase activity in vascular tissue may be subject to a novel regulatory mechanism involving an inhibitory protein factor which can be nullified by polyphosphates.  相似文献   

13.
S A Courtneidge  A Heber 《Cell》1987,50(7):1031-1037
It has previously been shown that a proportion of middle T antigen molecules exist in a stable complex with pp60c-src. Here we show that there appears to be a third component to the complex, a protein of molecular mass 81 kd (p81). p81 was phosphorylated exclusively on tyrosine residues in kinase assays performed using immunoprecipitates from polyoma virus-transformed cells and antibodies to both middle T and pp60c-src, and was also detected when immunoprecipitates were made from lysates of 32P-labeled cells. p81 was bound to middle T and pp60c-src in cell lines containing transforming mutants of middle T, but not (in phosphorylated form) to all nontransforming mutants. A parallel investigation of phosphatidylinositol kinase activity in immune complexes containing these middle T mutants revealed a complete coincidence between the presence of p81 and phosphatidylinositol kinase activity. We therefore suggest that p81 is a phosphatidylinositol kinase.  相似文献   

14.
In polyomavirus-transformed cells, pp60c-src is activated by association with polyomavirus middle T antigen. These complexes have a higher tyrosine kinase activity compared with that of unassociated pp60c-src. Genetic analyses have revealed that the carboxy-terminal 15 amino acids of pp60c-src and the amino-terminal half of middle T antigen are required for this association and consequent activation of the tyrosine kinase. To define in greater detail the borders of the domain in middle T antigen required for activation of pp60c-src, we constructed a set of unidirectional amino-terminal deletion mutants of middle T antigen. Analysis of these mutants revealed that the first six amino acids of middle T antigen are required for it to activate the kinase activity of pp60c-src and to transform Rat-1 fibroblasts. Analysis of a series of insertion and substitution mutants confirmed these observations and further revealed that mutations affecting the first four amino acids of middle T antigen reduced or abolished its capacity to activate the kinase activity of pp60c-src and to transform Rat-1 cells in culture. Our results suggest that the first four amino acids of middle T antigen constitute part of a domain required for activation of the pp60c-src tyrosyl kinase activity and for consequent cellular transformation.  相似文献   

15.
In vivo effect of sodium orthovanadate on pp60c-src kinase.   总被引:7,自引:4,他引:3  
We have compared the tyrosine kinase activity of pp60c-src isolated from intact chicken embryo fibroblasts treated with micromolar sodium orthovanadate for 4 h and from untreated cells. We found an approximate 50% reduction in both autophosphorylation of pp60c-src and phosphorylation of casein when examined in the immune complex kinase assay. The reduction of in vitro enzymatic activity correlated with a vanadate-induced increase in in vivo phosphorylation of pp60c-src at the major site of tyrosine phosphorylation in the carboxyl-terminal half of the molecule and at serine in the amino-terminal half of the molecule. Our observations in vivo and those of Courtneidge in vitro (EMBO J. 4:1471-1477, 1985) suggest that vanadate may enhance a cellular regulatory mechanism that inhibits the activity of pp60c-src in normal cells. A likely candidate for this mechanism is phosphorylation at a tyrosine residue distinct from tyrosine 416, probably tyrosine 527 in the carboxyl-terminal sequence of amino acids unique to pp60c-src. The regulatory role, if any, of serine phosphorylation in pp60c-src remains unclear. The 36-kilodalton phosphoprotein, a substrate of pp60v-src, showed a significant phosphorylation at tyrosine after treatment of normal chicken embryo fibroblasts with vanadate. Assuming that pp60c-src is inhibited intracellularly by vanadate, either another tyrosine kinase is stimulated by vanadate (e.g., a growth factor receptor) or the 36-kilodalton phosphoprotein in normal cells is no longer rapidly dephosphorylated by a tyrosine phosphatase in the presence of vanadate.  相似文献   

16.
The tyrosine kinase activity intrinsic to the insulin receptor is thought to be important in eliciting the intracellular responses to insulin; however, it has been difficult to determine the biochemical functions of the proteins which are substrates for this receptor. Treatment of Chinese hamster ovary (CHO) cells overexpressing the human insulin receptor (CHO.T) with insulin results in a 38 +/- 11 (mean +/- S.E., n = 9)-fold increase in a phosphatidylinositol (PtdIns) kinase activity in anti-phosphotyrosine immunoprecipitates of whole cell lysates. One minute of treatment of cells with insulin causes a dramatic increase in the PtdIns kinase activity in the anti-phosphotyrosine immunoprecipitates; the activity peaks within 5 min and remains elevated for at least 60 min after addition of insulin to the cells. This response is only slightly delayed compared with the time course we observe for activation of the insulin receptor tyrosine kinase. The insulin dose-response curves are also very similar for the activation of the insulin receptor tyrosine kinase activity and for the appearance of PtdIns kinase in the anti-phosphotyrosine immunoprecipitates. Stimulation of the endogenous insulin receptor of CHO cells also results in the association of PtdIns kinase activity with phosphotyrosine-containing proteins. However, CHO cells are less sensitive to insulin than CHO.T cells, and the maximal PtdIns kinase activity in antiphosphotyrosine immunoprecipitates from CHO cells is one-sixth that of CHO.T cells. In contrast, immunoprecipitates from CHO.T cells made with anti-insulin receptor antibodies do not contain significant levels of PtdIns kinase activity. This demonstrates that the PtdIns kinase is either a substrate for the insulin receptor tyrosine kinase or is tightly associated with another tyrosine phosphoprotein, which is not the insulin receptor.  相似文献   

17.
Phosphoinositide kinase activity and transformation   总被引:1,自引:0,他引:1  
We have used the DNA tumor virus polyoma as a model system to examine whether the phosphatidylinositol (PI) turnover pathway is a critical target for transforming gene products. Polyoma-infected cells show elevated levels of polyphosphoinositides and polyphosphoinositols, and a PI kinase activity is associated with middle T antigen, a transforming gene product of polyoma virus. In anti-T immunoprecipitates from polyoma-infected or -transformed cells, comparisons of wild-type and polyoma mutants defective for transformation show a strong correlation between middle T-associated PI kinase activity and transforming ability. Middle T has previously been found to associate at the plasma membrane with pp60 c-src and to activate it as a tyrosine kinase. c-src itself does not appear to phosphorylate PI; however, the middle T/pp60 c-src tyrosine kinase activity may be important for activation of PI kinase. Ammonium orthovanadate, a tyrosine phosphatase inhibitor, elevates the middle T/pp60 c-src-associated PI kinase activity. We propose that middle T/pp60 c-src activates a PI kinase and modulates PI turnover in vivo by tyrosine phosphorylation.  相似文献   

18.
We have shown previously that pp60c-src is a substrate for protein kinase C in vivo and that the target of protein kinase C phosphorylation in mammalian pp60c-src is serine 12. We now demonstrate that in addition to tumor promoters, all activators of phosphatidylinositol turnover that we have tested in fibroblasts (platelet-derived growth factor, fibroblast growth factor, serum, vasopressin, sodium orthovanadate, and prostaglandin F2 alpha) lead to the phosphorylation of pp60c-src at serine 12. In addition to stimulating serine 12 phosphorylation in pp60c-src, platelet-derived growth factor treatment of quiescent fibroblasts induces phosphorylation of one or two additional serine residues and one tyrosine residue within the N-terminal 16 kilodaltons of the enzyme and activates its immune complex protein-tyrosine kinase activity.  相似文献   

19.
Chicken embryo fibroblast cells overexpressing activated mutant forms of human pp60c-src, but not those overexpressing normal human pp60c-src, exhibited high levels of type I phosphatidylinositol (PI) kinase activity associated with pp60c-src. Levels of PI kinase activity were positively correlated with src tyrosine protein kinase activity and not with absolute levels of pp60c-src. Our results suggest that a linkage exists between certain forms of pp60c-src and the PI signal transduction pathway.  相似文献   

20.
We have found that lysis of mouse embryo cells infected with the polyomavirus host range transformation-defective (hr-t) mutant NG59 under gentle conditions that avoid ionic detergents results in detectable NG59-encoded middle tumor antigen (MTAg) associated with pp60c-src. This MTAg-pp60c-src complex could be immunoprecipitated from NG59-infected cell lysates by either sera from animals bearing polyomavirus-induced tumors or by monoclonal antibodies directed against MTAg. Immune complex kinase assays revealed that, whereas the pp60c-src associated with NG59 MTAg possessed tyrosyl kinase activity, the NG59 MTAg in this complex was not phosphorylated in these in vitro reactions. These results demonstrate that the point insertion mutation found in this transformation-deficient strain of polyomavirus encodes MTAg molecules capable of associating with pp60c-src and defines a limited region within MTAg which appears to be critical for stable MTAg-pp60c-src interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号