首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To identify microbial strains with esterase activity able to enantioselectively hydrolyse esters of (R,S)-1,2-O-isopropylidene glycerol. METHODS AND RESULTS: The microbial hydrolysis of various racemic esters of 1,2-O-isopropylidene glycerol (IPG) was attempted by screening among Streptomyces spp. previously selected on the basis of their carboxylesterase activity. The best results were observed in the hydrolysis of butyrate ester and two strains appeared promising as they showed opposite enantioselectivity: Streptomyces sp. 90852 gave predominantly (S)-IPG, while strain 90930 mostly gave the R-alcohol. Streptomyces sp. 90930 was identified as Streptomyces violaceusniger, whereas Streptomyces sp. 90852 is a new species belonging to the Streptomyces violaceus taxon. The carboxylesterase belonging to strain 90852 gave a maximum value of enantiomeric ratio (E) of 14-16. This strain was lyophilized and used as dry mycelium for catalysing the synthesis of isopropylidene glycerol butyrate in heptane showing reaction rate and enantioselectivity (E = 6.6) lower than what observed for the hydrolysis. CONCLUSIONS: A new esterase with enantioselective activity towards (R,S)-IPG butyrate has been selected. The best enantioselectivity is similar or even better than the highest reported value in the literature with commercial enzymes. The enzyme is produced by a new species belonging to the S. violaceus taxon. SIGNIFICANCE AND IMPACT OF THE STUDY: New esterases from streptomycetes can be employed for the enantioselective hydrolysis of chiral esters derived from primary alcohols, not efficiently resolved with commercial enzymes.  相似文献   

2.
Carboxylesterase NP of Bacillus subtilis Thai I-8, characterized in 1992 as a very enantioselective (S)-naproxen esterase, was found to show no enantiopreference towards (S)-1,2-O-isopropylideneglycerol (IPG) esters. The ybfK gene was identified by the B. subtilis genome project as an unknown gene with homology to carboxylesterase NP. The purpose of the present study was to characterize the ybfK gene product in order to determine whether this paralogue of carboxylesterase NP had an altered or enhanced stereospecificity. The ybfK gene was cloned and expressed in B. subtilis using a combination of two strong promoters in a multicopy vector. The enzyme was purified from the cytoplasm of B. subtilis by means of anion exchange and hydrophobic interaction chromatography. The purified YbfK is an enzyme of 296 amino acids and shows an apparent molecular mass of 32 kDa (SDS/PAGE). Comparison of the activities of YbfK and carboxylesterase NP towards caprylate esters of IPG revealed that YbfK produces (S)-IPG with 99.9% enantioselectivity. Therefore, we conclude that we have isolated a paralogue of carboxylesterase NP that can be used for the enantioselective production of (S)-IPG.  相似文献   

3.
An extracellular thermostable lipase from Amycolatopsis mediterranei DSM 43304 has been purified to homogeneity using ammonium sulphate precipitation followed by anion exchange chromatography and hydrophobic interaction chromatography. This protocol resulted in a 398-fold purification with 36% final recovery. The purified A. mediterranei DSM 43304 lipase (AML) has an apparent molecular mass of 33 kDa. The N-terminal sequence, AANPYERGPDPTTASIEATR, showed highest similarity to a lipase from Streptomyces exfoliatus. The values of K(m)(app) and V(max)(app) for p-nitrophenyl palmitate (p-NPP) at the optimal temperature (60°C) and pH (8.0) were 0.099±0.010 mM and 2.53±0.06 mmol/min mg, respectively. The purified AML displayed significant activity towards a range of short and long chain triglyceride substrates and p-nitrophenyl esters. Hydrolysis of glycerol ester bonds occurred non-specifically. The purified AML displayed significant stability in the presence of organic solvents (40%, v/v) and catalyzed the synthesis of the flavour ester isoamyl acetate in free and immobilized states.  相似文献   

4.
The comparative substrate specificities of five purified serine hydrolases from rat liver microsomes have been investigated, especially their action upon natural lipoids. All enzymes had high carboxylesterase activities with simple aliphatic and aromatic esters and thioesters. The broad pH optima were in the range of pH 6-10. Synthetic amides were less potent substrates. The hydrolytic activities towards palmitoyl-CoA and monoacyl glycerols were generally high, whereas phospholipids and palmitoyl carnitine were cleaved at moderate rates. Acetyl-CoA, acetyl carnitine, and ceramides were not cleaved at all. The closely related hydrolases with the highest isoelectric points (pI 6.2 and 6.4) were most active with palmitoyl-CoA and palmitoyl glycerol. One of these enzymes might also be responsible for the low cholesterol oleate-hydrolyzing capacity of rat liver microsomes. Among the other hydrolases, that with pI 6.0 showed significant activities with simple butyric acid esters, 1-octanoyl glycerol, and octanoylamide. The esterase with pI 5.6 had the relatively highest activities with palmitoyl carnitine and lysophospholipids. The purified enzyme with pI 5.2 showed some features of the esterase pI 5.6, but generally had lower specific activities, except with 4-nitrophenyl acetate. The lipoid substrates competitively inhibited the arylesterase activity of the enzymes. The varying activities of the individual hydrolases were influenced in parallel by a variety of inhibitors, indicating that the purified hydrolases possessed a relatively broad specificity and were not mixtures of more specific enzymes. The nomenclature of the purified hydrolases is discussed.  相似文献   

5.
A highly enantioselective l-menthyl acetate esterase was purified to homogeneity from Burkholderia cepacia ATCC 25416, with a recovery of 4.8% and a fold purification of 22.7. The molecular weight of the esterase was found to be 37 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The N-terminal amino acid sequence was “MGARTDA”, and there was no homology in contrast to other Burkholderia sp. esterases. This enzyme preferentially hydrolyzed short-chain fatty acid esters of menthol with high stereospecificity and high hydrolytic activity, while long-chain l-menthyl esters were poor substrates. Considered its substrate specificity and N-terminal sequence, this esterase was concluded as a new enzyme belonging to the carboxylesterase group (EC 3.1.1.1) of esterase family. The optimum temperature and pH for enzyme activity using racemic menthyl acetate as substrate were 30 °C and 7.0, respectively. The esterase was more stable in the pH range of 7.0–9.0 and temperature range of 30–40 °C. Hydrolytic activity was enhanced by Ca2+, K+ and Mg2+, but completely inhibited by Hg2+, Cu2+, ionic detergents and phenylmethylsulfonyl fluoride (PMSF) at 0.01 M concentration.  相似文献   

6.
Escherichia coli has been widely used as an expression host for the identification of desired biocatalysts through screening or selection assays. We have previously used E. coli in growth selection and screening assays for identification of Bacillus subtilis lipase variants (located in the periplasm) with improved activity and enantioselectivity toward 1,2-O-isopropylideneglycerol (IPG) esters. In the course of these studies, we discovered that E. coli itself exhibits significant cytoplasmic esterase activity toward IPG esters. In order to identify the enzyme (or enzymes) responsible for this esterase activity, we analyzed eight E. coli knockout strains, in which single esterase genes were deleted, for their ability to hydrolyze IPG butyrate. This approach led to the identification of esterase YbfF as the major E. coli enzyme responsible for the hydrolytic activity toward IPG esters. The gene coding for YbfF was cloned and overexpressed in E. coli, and the corresponding protein was purified and characterized for its biocatalytic performance. YbfF displays a high level of activity toward IPG butyrate and IPG caprylate and prefers the R-enantiomer of these substrates, producing the S-enantiomer of the IPG product with high enantiomeric excess (72 to 94% ee). The enantioselectivity of YbfF for IPG caprylate (E = 40) could be significantly enhanced when using dimethylformamide (DMF) or dimethyl sulfoxide (DMSO) as cosolvents in kinetic resolution experiments. The enzyme also shows high enantioselectivity toward 1-phenylethyl acetate (E ≥ 200), giving the chiral product (R)-1-phenylethanol with >99% ee. The high activity and enantioselectivity of YbfF make it an attractive enzyme for organic synthesis.  相似文献   

7.
利用来源南海深海的微生物酯酶EST12-7不对称水解反应拆分制备(R)-2-氯丙酸乙酯。并探寻了温度、pH、底物浓度、有机溶剂和反应时间等因素对酯酶EST12-7催化制备(R)-2-氯丙酸乙酯的影响。结果表明,深海微生物酯酶EST12-7催化制备(R)-2-氯丙酸乙酯的最佳反应条件为:13.8 μg/ml酯酶EST12-7,50 mmol/L(±)-2-氯丙酸乙酯,2%正癸醇,pH8.5,30℃,0.05mol/L Tris-HCl,反应60 min。在最佳反应条件下,(±)-2-氯丙酸乙酯的转化率可达49%,所制备的(R)-2-氯丙酸乙酯的光学纯度为98%。通过对酯酶EST12-7拆分制备(R)-2-氯丙酸甲酯和(R)-2-氯丙酸乙酯进行比较,2-氯丙酸酯中的链长对酯酶EST12-7拆分反应有极大的影响。  相似文献   

8.
An esterase with excellent stereoselectivity for (+)-trans-ethyl chrysanthemate was purified to homogeneity from Arthrobacter globiformis SC-6-98-28. The purified enzyme hydrolyzed a mixture of ethyl chrysanthemate isomers stereoselectively to produce (+)-trans-acid with 100% stereoisomeric purity. The apparent molecular weight of the purified enzyme was 43,000 on SDS–polyacrylamide gel electrophoresis, and 94,000 on gel filtration chromatography. The optimum conditions for the ester hydrolysis were pH 10.0 at 45°C. The purified esterase hydrolyzed short-chain fatty acid esters, but did not have detectable activity on long-chain water-insoluble fatty acid esters. The enzyme activity was inbibited by diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride.  相似文献   

9.
Previously studied Bacillus subtilis carboxylesterases (CesA and CesB) have potential for the kinetic resolution of racemic esters of 1,2-O-isopropylideneglycerol (IPG). CesA exhibits high activity but low enantioselectivity towards IPG-butyrate and IPG-caprylate, while the more enantioselective CesB does not process IPG-butyrate and exhibits several-fold lower activity than CesA towards IPG-caprylate. A sequence and structure comparison allowed us to identify active site residues that may cause the difference in (enantio)selectivities of CesA and CesB towards these IPG esters. This structure-based approach led to the identification of two active site residues in CesA (F166 and F182), as promising candidates for mutagenesis in order to enhance its enantioselectivity. Mutagenesis of positions 166 and 182 in CesA yielded novel variants with enhanced enantioselectivity and without significant loss of catalytic activity. For IPG-butyrate, a CesA double mutant F166V/F182C (ER=13) was generated showing a ~13-fold increased enantioselectivity as compared to wild-type CesA (E=1). For IPG-caprylate, we designed a CesA double mutant F166V/F182Y (ER=9) displaying a ~5-fold increased enantioselectivity as compared to the wild-type enzyme (ER=2). These findings, combined with the results of molecular docking experiments, demonstrate the importance of residues at positions 166 and 182 for the enantioselectivity of CesA, and may contribute to the development of efficient biocatalysts.  相似文献   

10.
An ester hydrolase (ABL) has been isolated from a strain of Arthrobacter species (RRLJ-1/95) maintained in the culture collection of this laboratory. The purified enzyme has a specific activity of 1700 U/mg protein and is found to be composed of a single subunit (Mr 32,000), exhibiting both lipase and esterase activities shown by hydrolysis of triglycerides and p-nitrophenyl acetate respectively. Potential application of the enzyme concerns the asymmetrisation of prochiral 2-benzyl-1,3-propanediol esters besides enantioselective hydrolysis of alkyl esters of unsubstituted and substituted 1-phenyl ethanols.  相似文献   

11.
A genomic library of Pseudomonas fluorescens DSM 50106 in a λRESIII phage vector was screened in Escherichia coli K-12 for esterase activity by using α-naphthyl acetate and Fast Blue RR. A 3.2-kb DNA fragment was subcloned from an esterase-positive clone and completely sequenced. Esterase EstF1 was encoded by a 999-bp open reading frame (ORF) and exhibited significant amino acid sequence identity with members of the serine hydrolase family. The deduced amino acid sequences of two other C-terminal truncated ORFs exhibited homology to a cyclohexanone monooxygenase and an alkane hydroxylase. However, esterase activity was not induced by growing of P. fluorescens DSM 50106 in the presence of several cyclic ketones. The esterase gene was fused to a His tag and expressed in E. coli. The gene product was purified by zinc ion affinity chromatography and characterized. Detergents had to be added for purification, indicating that the enzyme was membrane bound or membrane associated. The optimum pH of the purified enzyme was 7.5, and the optimum temperature was 43°C. The showed highest purified enzyme activities towards lactones. The activity increased from γ-butyrolactone (18.1 U/mg) to -caprolactone (21.8 U/mg) to δ-valerolactone (36.5 U/mg). The activities towards the aliphatic esters were significantly lower; the only exception was the activity toward ethyl caprylate, which was the preferred substrate.  相似文献   

12.
Esterase activities toward model xenobiotic substrates ( p -nitrophenyl acetate, naphthyl acetate) and pesticide esters (diclofop methyl, bromoxynil octanoate, binapacryl) have been compared in crude extracts from wheat (Triticum aestivum L.) and Triticum progenitors of wheat. Esterase activities were also determined in the weeds, wild oat ( Avena fatua ) and two populations of black-grass ( Alopecurus myosuroides ), one of which (Rothamsted) is susceptible to herbicides, while the other (Peldon) shows cross-resistance to multiple classes of herbicides. Esterase activity toward the model substrates was highest in wheat, while the weeds were more active in hydrolysing the pesticides. Using isoelectric focussing (pH 4–8), 13 proteins with esterase activity toward α -naphthyl acetate could be resolved in hexaploid wheat (genome AABBDD). The pattern of these activities was most similar to that of the diploid progenitor T. tauschii (DD), excepting a major acidic esterase (pI 4.6), which originated from T. urartu (AA). Resolved esterase activities in the weeds were distinct from those observed in the Tritcum species. However, unlike the case with other classes of xenobiotic-metabolising enzymes, the complement of esterases in the Peldon and Rothamsted populations of black-grass appeared to be identical. In all species, the more basic esterases (>pI 5.0) were sensitive to inhibition by organophosphate and carbamate insecticides, suggesting that they were B-class esterases. In contrast, the acidic wheat esterase (pI 4.6) with the greatest activity toward α -naphthyl acetate was insensitive to insecticides. This wheat-specific esterase was purified 7000-fold by a combination of hydrophobic interaction chromatography, gel filtration and anion-exchange chromatography. The purified esterase behaved as a monomeric 45-kDa protein showing high activity toward p -nitrophenyl acetate and α -naphthyl acetate, but limited activity toward the pesticides.  相似文献   

13.
The aim of this work was to investigate the behavior of thermophilic esterase EST2 from Alicyclobacillus acidocaldarius in milk and cheese models. The pure enzyme was used to compare the EST2 hydrolytic activity to the activity of endogenous esterase EstA from Lactococcus lactis. The results indicate that EST2 exhibits 30-fold-higher esterase activity than EstA. As EstA has thioesterase activity, EST2 was assayed for this activity under the optimal conditions determined for EstA (namely, 30 degrees C and pH 7.5). Although it is a thermophilic enzyme, EST2 exhibited eightfold-higher thioesterase activity than EstA with S-methyl thiobutanoate. The abilities of EST2 and EstA to synthesize short-chain fatty acid esters were compared. Two methods were developed to do this. In the first method a spectrophotometric assay was used to monitor the synthesis of esters by the pure enzymes using p-nitrophenol as the alcohol substrate. The synthetic activities were also evaluated under conditions that mimicked those present in milk and/or cheese. The second method involved evaluation of the synthetic abilities of the enzymes when they were directly added to a model cheese matrix. Substantial ester synthesis by EST2 was observed under both conditions. Finally, esterase and thioesterase activities were evaluated in milk using the purified EST2 enzyme and in the model cheese matrix using a strain of L. lactis NZ9000 harboring the EST2 gene and thus overproducing EST2. Both the esterase and thioesterase activities measured in milk and in the cheese matrix were much greater than the activities of the controls.  相似文献   

14.
Yoo SS  Park S  Lee EY 《Biotechnology letters》2008,30(10):1807-1810
The reaction medium was optimized to accomplish epoxide hydrolase-catalyzed, batch enantioselective hydrolysis of racemic styrene oxide at high initial substrate concentrations. The recombinant Pichia pastoris containing the epoxide hydrolase gene of Rhodotorula glutinis was used as the biocatalyst. Enantiopure (S)-styrene oxide with 98% ee was obtained with 41% yield (maximum yield = 50%) from 1.8 M racemic styrene oxide at pH 8.0, 4 degrees C in the presence of 40% (v/v) Tween 20 and 5% (v/v) glycerol.  相似文献   

15.
Several thermo- and mesoacidophilic bacterial strains that revealed high lipolytic activity were isolated from water samples derived from acidic hot springs in Los Nevados National Natural Park (Colombia). A novel lipolytic enzyme named 499EST was obtained from the thermoacidophilic alpha-Proteobacterium Acidicaldus USBA-GBX-499. The gene estA encoded a 313-amino-acid protein named 499EST. The deduced amino acid sequence showed the highest identity (58 %) with a putative α/β hydrolase from Acidiphilium sp. (ZP_08632277.1). Sequence alignments and phylogenetic analysis indicated that 499EST is a new member of the bacterial esterase/lipase family IV. The esterase reveals its optimum catalytic activity at 55 °C and pH 9.0. Kinetic studies showed that 499EST preferentially hydrolyzed middle-length acyl chains (C6-C8), especially p-nitrophenyl (p-NP) caproate (C6). Its thermostability and activity were strongly enhanced by adding 6 mM FeCl3. High stability in the presence of water-miscible solvents such as dimethyl sulfoxide and glycerol was observed. This enzyme also exhibits stability under harsh environmental conditions and enantioselectivity towards naproxen and ibuprofen esters, yielding the medically relevant (S)-enantiomers. In conclusion, according to our knowledge, 499EST is the first thermoalkalostable esterase derived from a Gram-negative thermoacidophilic bacterium.  相似文献   

16.
基于GenBank公布的枯草芽胞杆菌168基因组序列,克隆表达了30个预测的酯水解酶基因。结果发现:其中7个酶对对硝基苯酚酯表现出明显的酯水解活力。它们在α/β水解酶家族中分属5个不同的亚家族。通过显色底物和pH指示剂进行的高通量筛选,分别绘制了这7个酶的底物指纹谱。考察了酶催化手性酯水解反应的对映选择性,结果表明:对硝基苄基酯酶PnbA和S-脱乙酰化酶Cah对手性醇的乙酸酯具有较广的底物谱,而PnbA和羧酸酯酶Nap分别对DL-薄荷醇乙酸酯和2-氯-1-苯乙醇乙酸酯/2-萘乙醇乙酸酯有极好的对映选择性(E>200)。此外,发现酯酶YitV催化2-氯-1-苯乙醇乙酸酯水解的反应遵循反-Kazlauskas规则。  相似文献   

17.

Objective

To identify an esterase-mediated kinetic resolution of secondary alcohols in non-aqueous medium.

Results

An esterase, EST4, from a marine mud metagenomic library, showed high activity and enantioselectivity for the kinetic resolution of secondary alcohols in non-aqueous medium. Using 1-phenylethanol as the model alcohol, the effects of organic solvents, acyl donors, molar ratio, temperatures and biocatalyst loading on the kinetic resolution catalyzed by the EST4 whole-cell biocatalyst were investigated and optimized. The optimized methodology was effective on resolving 16 various racemic secondary alcohols in neat n-hexane, providing excellent enantiomeric excess (up to 99.9 % ee). Moreover, EST4 exhibited a strong tolerance for high substrate concentration (up to 1 M), and the optical purity of the desired secondary alcohols was kept above 99 % ee.

Conclusion

The esterase EST4 is a promising biocatalyst for the enantioselective synthesis of various alcohols and esters with interesting practical applications.
  相似文献   

18.
Lipase of Mucor pusillus NRRL 2543 was recovered with ammonium sulfate precipitation, gel filtration on Sephadex G-75, and anion-exchange chromatography on diethylaminoethyl-Sephadex A-50. Maximal glycerol ester hydrolase (lipase) activity was observed at pH 5.0 to 5.5 and 50 C when trioctanoin and olive oil were used as substrates. The enzyme also showed esterase activity; it hydrolyzed, with the exception of methyl butyrate, all methyl esters tested. A minimum chain length of six carbons appeared to be a requirement for esterase activity, which was maximal at about pH 5.5 with methyl dodecanoate (C(12)) as the substrate. Neither the glycerol ester hydrolase (lipase) nor the esterase activity of the enzyme appeared to be affected by thiol group inhibitors, chelating agents, and reducing compounds. On the other hand, hydrolysis of triolein and methyl dodecanoate was arrested to the same extent in the presence of diisopropyl fluorophosphate, which suggested the involvement of serine in the active center of the enzyme. The enzyme remained stable during a 30-day storage at - 10 C.  相似文献   

19.
Abstract— Isolated bovine central nerve myelin sheath preparations showed non-specific esterase activity towards naphthyl ester substrates of increasing chain length from acetate to palmitate. Short chain esters were hydrolysed much faster than long chain substrates by myelin, the specific activity for the hydrolysis of β-naphthyl acetate being the highest. Micro-somal fractions from brain white matter were much higher in esterase activity to all naphthyl ester substrates. NADPH-cytochrome c reductase activity was absent from isolated myelin samples. Distilled water and salt and buffer solutions of different ionic strengths and pH were ineffective in releasing non-specific esterase activity from myelin although tri-potassium citrate caused marked inhibition of the membrane-bound esterase activity. The detergent Triton X-100 released esterase activity from the myelin preparations but at a concentration of 0.1 per cent was also inhibitory.  相似文献   

20.
The aim of this work was to investigate the behavior of thermophilic esterase EST2 from Alicyclobacillus acidocaldarius in milk and cheese models. The pure enzyme was used to compare the EST2 hydrolytic activity to the activity of endogenous esterase EstA from Lactococcus lactis. The results indicate that EST2 exhibits 30-fold-higher esterase activity than EstA. As EstA has thioesterase activity, EST2 was assayed for this activity under the optimal conditions determined for EstA (namely, 30°C and pH 7.5). Although it is a thermophilic enzyme, EST2 exhibited eightfold-higher thioesterase activity than EstA with S-methyl thiobutanoate. The abilities of EST2 and EstA to synthesize short-chain fatty acid esters were compared. Two methods were developed to do this. In the first method a spectrophotometric assay was used to monitor the synthesis of esters by the pure enzymes using p-nitrophenol as the alcohol substrate. The synthetic activities were also evaluated under conditions that mimicked those present in milk and/or cheese. The second method involved evaluation of the synthetic abilities of the enzymes when they were directly added to a model cheese matrix. Substantial ester synthesis by EST2 was observed under both conditions. Finally, esterase and thioesterase activities were evaluated in milk using the purified EST2 enzyme and in the model cheese matrix using a strain of L. lactis NZ9000 harboring the EST2 gene and thus overproducing EST2. Both the esterase and thioesterase activities measured in milk and in the cheese matrix were much greater than the activities of the controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号