首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed pharmacological characterization of metabotropic glutamate receptors (mGluR) was performed in primary cultures of cerebellar granule cells at 6 days in vitro (DIV). The rank order of agonists induced polyphosphoinositide (PPI) hydrolysis (after correcting for the ionotropic component in the response) was as follows: in terms of efficiency, Glu>quisqualate (quis)=ibotenate (ibo)>(1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid (ACPD)>-methyl-amino-l-alanine (BMAA) and in terms of potency, quis>ACPD>Glu>ibo=BMAA. Ionotropic excitatory amino acid (EAA) receptor agonists, such as -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) were relatively inactive (in the presence of Mg2+). Quis and ACPD-induced PPI hydrolysis was unaffected by ionotropic Glu receptor antagonists, but was inhibited, in part by L-2-amino-3-phosphonopropionate (AP3). In contrast, Glu-or ibo- induced PPI hydrolysis was reduced, in part, by both AP3 and NMDA receptor antagonists. Characteristic interactions involving different transmitter receptors were noted. PPI hydrolysis evoked by quis and 1S,3R-ACPD was not additive. In contrast, PPI hydrolysis stimulated by quis/ACPD and carbamylcholine was additive (indicating different receptors/transduction pathways). In the presence of Mg2+, the metabotropic response to quis/AMPA and NMDA was synergistic (this being consistent with AMPA receptor-induced depolarization activating NMDA receptor). On the other hand, in Mg2+-free buffer the effects of quis and NMDA, at concentrations causing maximal PPI hydrolysis, were additive (indicating that PPI hydrolysis was effected by two different mechanisms). Thus, in cerebellar granule cells EAAs elicit PPI hydrolysis by acting at two distinct receptor types: (i) metabotropic Glu receptors (mGluR), with pharmacological characteristics suggesting the expression of a unique mGluR receptor that shows certain similarities to those observed for the mGluR1 subtype (Aramori and Nakanishi, 1992) and (ii) NMDA receptors. The physiological agonist, Glu, is able to stimulate both receptor classes.Abbreviations ACPD (1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid - AMPA -amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid - AP3 L-2-amino-3-phosphono-propionate - AP5 D-2-amino-5-phosphonopentenoate - BMAA -methyl-amino-L-alanine - DIV days in vitro - DNOX 6,7-dinitroouinoxoline-2,3-dione - EAA excitatory amino acids - Glu glutamate - InsP inositol monophosphate - mGluR metabotropic glutamate receptors - MK-801 (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohept-5,10-imine hydrogen maleate - NMDA N-methyl-D-aspartate - PPI polyphosphoinositide - quis quisqualate  相似文献   

2.
2,4-Dichlorophenoxyacetic acid (2,4-D) and derivatives are herbicides widely used in Argentina and other parts of the world. Exposure to 2,4-D, its ester and salt formulations, have been associated with a range of adverse health effects in humans and different animal species, from embryotoxicity and teratogenicity to neurotoxicity. In this work, we demonstrate that after 24 hs of treatment with 1 and 2 mM 2,4-D there is an induction of apoptosis in cerebellar granule cells (CGC) in culture. However, with 2 mM 2,4-D one population of CGC developed features of apoptosis while another appeared to die by necrosis. This process is associated with an increase in caspase-3 activity after 12 hs of treatment with the herbicide, which is preceded by cytochrome c release from the mitochondria. Treatment of CGC with 2,4-D appears to induce apoptosis by a direct effect on mitochondria producing cytochrome c release and consequently activation of caspase-3, being mitochondrial damage sufficient for triggering the events that may cause apoptosis.  相似文献   

3.
4.
Minocycline has been shown to have remarkably neuroprotective qualities, but underlying mechanisms remain elusive. We reported here the robust neuroprotection by minocycline against glutamate-induced apoptosis through regulations of p38 and Akt pathways. Pre-treatment of cerebellar granule neurons (CGNs) with minocycline (10-100 microm) elicited a dose-dependent reduction of glutamate excitotoxicity and blocked glutamate-induced nuclear condensation and DNA fragmentations. Using patch-clamping and fluorescence Ca2+ imaging techniques, it was found that minocycline neither blocked NMDA receptors, nor reduced glutamate-caused rises in intracellular Ca2+. Instead, confirmed by immunoblots, minocycline in vivo and in vitro was shown to directly inhibit the activation of p38 caused by glutamate. A p38-specific inhibitor, SB203580, also attenuated glutamate excitotoxicity. Furthermore, the neuroprotective effects of minocycline were blocked by phosphatidylinositol 3-kinase (PI3-K) inhibitors LY294002 and wortmannin, while pharmacologic inhibition of glycogen synthase kinase 3beta (GSK3beta) attenuated glutamate-induced apoptosis. In addition, immunoblots revealed that minocycline reversed the suppression of phosphorylated Akt and GSK3beta caused by glutamate, as were abolished by PI3-K inhibitors. These results demonstrate that minocycline prevents glutamate-induced apoptosis in CGNs by directly inhibiting p38 activity and maintaining the activation of PI3-K/Akt pathway, which offers a novel modality as to how the drug exerts protective effects.  相似文献   

5.
Maturation of primary neuronal cultures is accompanied by an increase in the proportion of cells that exhibit biphasic increase in free cytoplasmic Ca2+ ([Ca2+]i) followed by synchronic decrease in electrical potential difference across the inner mitochondrial membrane (DeltaPsim) in response to stimulation of glutamate receptors. In the present study we have examined whether the appearance of the second phase of [Ca2+]i change can be attributed to arachidonic acid (AA) release in response to the effect of glutamate (Glu) on neurons. Using primary culture of rat cerebellar granule cells we have investigated the effect of AA (1-20 microM) on [Ca2+]i, DeltaPsim, and [ATP] and changes in these parameters induced by neurotoxic concentrations of Glu (100 microM, 10-40 min). At =10 microM, AA caused insignificant decrease in DeltaPsim without any influence on [Ca2+]i. The mitochondrial ATPase inhibitor oligomycin enhanced AA-induced decrease in DeltaPsim; this suggests that AA may inhibit mitochondrial respiration. Addition of AA during the treatment with Glu resulted in more pronounced augmentation of [Ca2+]i and the decrease in DeltaPsim than the changes in these parameters observed during independent action of AA; removal of Glu did not abolish these changes. An inhibitor of the cyclooxygenase and lipoxygenase pathways of AA metabolism, 5,8,11,14-eicosatetraynoic acid, increased the proportion of neurons characterized by Glu-induced biphasic increase in [Ca2+]i and the decrease in DeltaPsim. Palmitic acid (30 microM) did not increase the percentage of neurons exhibiting biphasic response to Glu. Co-administration of AA and Glu caused 2-3 times more pronounced decrease in ATP concentrations than that observed during the independent effect of AA and Glu. The data suggest that AA may influence the functional state of mitochondria, and these changes may promote biphasic [Ca2+]i and DeltaPsim responses of neurons to the neurotoxic effect of Glu.  相似文献   

6.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a prototypical environmental contaminant with neurotoxic properties that alters neurodevelopment and behavior. TCDD is a ligand of the aryl hydrocarbon receptor (AhR), which is a key signaling molecule to fully understand the toxic and carcinogenic properties of dioxin. Much effort is underway to unravel the molecular mechanisms and the signaling pathways involved in TCDD-induced neurotoxicity, and to define its molecular targets in neurons. We have used cerebellar granule cells (CGC) from wild-type (AhR+/+) and AhR-null (AhR-/-) mice to characterize the cell death that takes place in neurons after TCDD toxicity. TCDD induced cell death in CGC cultures from wild-type mice with an EC(50) of 127±21 nM. On the contrary, when CGC neurons from AhR-null mice were treated with TCDD no significant cell death was observed. The role of AhR in TCDD-induced death was further assessed by using the antagonists resveratrol and α-naphtoflavone, which readily protected against TCDD toxicity in AhR+/+ CGC cultures. AhR+/+ CGC cultures treated with TCDD showed nuclear fragmentation, DNA laddering, and increased caspase 3 activity, similarly to what was found by the use of staurosporine, a well-established inducer of apoptosis. Finally, the AhR pathway was active in CGC because TCDD could induce the expression of the target gene cytochrome P450 1A2 in AhR+/+ CGC cultures. All together these results support the hypothesis that TCDD toxicity in CGC neurons involves the AhR and that it takes place mainly through an apoptotic process. AhR could be then considered a novel target in neurotoxicity and neurodegeneration whose down-modulation could block certain xenobiotic-related adverse effects in CNS.  相似文献   

7.
In the present study we focused in the PI3K/Akt pathway which plays a key role in neuronal survival. Here we show that inhibition of PI3K/Akt by means of LY294002 induces apoptosis via a caspase-dependent and calpain-independent pathway in cerebellar granule neurons (CGNs). This finding was confirmed using zVAD-fmk, a widely caspase inhibitor that prevents apoptosis. For this purpose, we compared two models of apoptosis in CGNs, namely inhibition of PI3K/Akt, and serum potassium deprivation (S/K deprivation). In contrast to the S/K deprivation model, caspase-3 was not activated when PI3K is inhibited. Likewise, CDK5 activation was not involved in this apoptotic process, because calpain activation is responsible for the formation of CDK5/p25 neurotoxic form. However, S/K deprivation activated calpain, as it is shown by α-spectrin breakdown, and favoured the formation of CDK5/p25. Moreover, although PI3K/Akt inhibition enhanced pRbser780 phosphorylation, no increase in the expression of cell-cycle proteins, namely: cyclin D, cyclin E, CDK2 or CDK4, was detected. Furthermore, BrdU incorporation assay did not shown any increase in DNA synthesis. Likewise, PI3K/Akt inhibition increased GSK3β activity and c-Jun phosphorylation, which implicates these two pathways in this apoptotic route. Although previous reports suggest that apoptosis induced in CGNs by LY294002 and S/K deprivation causes PI3K inhibition and increases GSK3β activity and c-Jun phosphorylation activation, our results demonstrate substantial differences between them and point to a key role of GSK3β in the apoptosis induced in CGNs in the two models tested.  相似文献   

8.
In mouse cerebellar granule neurons (CGNs) the marine neurotoxin domoic acid (DomA) induces neuronal cell death, either by apoptosis or by necrosis, depending on its concentration, with apoptotic damage predominating in response to low concentrations (100 nM). DomA-induced apoptosis is due to selective activation of AMPA/kainate receptors, and is mediated by DomA-induced oxidative stress, leading to mitochondrial dysfunction and activation of caspase-3. The p38 MAP kinase and the c-Jun NH2-terminal protein kinase (JNK) have been shown to be preferentially activated by oxidative stress. Here we report that DomA increases p38 MAP kinase and JNK phosphorylation, and that this effect is more pronounced in CGNs from Gclm (-/-) mice, which lack the modifier subunit of glutamate-cysteine ligase, have very low glutathione (GSH) levels, and are more sensitive to DomA-induced apoptosis than CGNs from wild-type mice. The increased phosphorylation of JNK and p38 kinase was paralleled by a decreased phosphorylation of Erk 1/2. The AMPA/kainate receptor antagonist NBQX, but not the NMDA receptor antagonist MK-801, prevents DomA-induced activation of p38 and JNK kinases. Several antioxidants (GSH ethyl ester, catalase and phenylbutylnitrone) also prevent DomA-induced phosphorylation of JNK and p38 MAP kinases. Inhibitors of p38 (SB203580) and of JNK (SP600125) antagonize DomA-induced apoptosis. These results indicate the importance of oxidative stress-activated JNK and p38 MAP kinase pathways in DomA-induced apoptosis in CGNs.  相似文献   

9.
From 1 to 3 h after the onset of cerebellar granule cells (CGC) apoptosis in a low-K+(5 mm KCl) medium there was a large decay of NADH and a 2.5-fold increase of the rate of reactive oxygen species (ROS) production (measured using CGC loaded with dichlorodihydrofluorescein). During the same time period, the ascorbate-dependent NADH oxidase activity, which accounted for more than 90% of both total NADH oxidase activity and NADH-dependent *O2- production of CGC lysates, increased 2.5- to threefold. The stimulation of the ascorbate-dependent NADH oxidase activity by oxidized cytochrome c, 2.5-fold at saturation with a K(0.5) of 4-5 microm cytochrome c, can at least partially explain this activation. The plasma membrane ascorbate-dependent NADH oxidase activity accounted for more than 70% of the total activity (both in terms of NADH oxidase and *O2- release) of CGC lysates. 4-Hydroxyquinazoline (4-HQ), which was found to block this apoptotic process, prevented the increase of ROS production. 4-HQ protection against cell viability loss and DNA fragmentation correlated with the inhibition by 4-HQ of the ascorbate-dependent NADH oxidase activity of CGC lysates, showing the same K(0.5)-value (4-5 mm 4-HQ). The efficient blockade of CGC apoptosis by addition of superoxide dismutase to the medium further supports the neurotoxic role of *O2- overproduction by the plasma membrane ascorbate-dependent NADH oxidase.  相似文献   

10.
Intracellular calcium homeostasis is important for cell survival. However, increase in mitochondrial calcium (Ca2+m) induces opening of permeability transition pore (PTP), mitochondrial dysfunction and apoptosis. Since alterations of intracellular Ca2+ and reactive oxygen species (ROS) generation are involved in cell death, they might be involved in neurodegenerative processes such as Huntington's disease (HD). HD is characterized by the inhibition of complex II of respiratory chain and increase in ROS production. In this report, we studied the correlation between the inhibitor of the complex II, 3-nitropropionic acid (3NP), Ca2+ metabolism, apoptosis and behavioural alterations. We showed that 3NP (1 mm) is able to release Ca2+m, as neither Thapsigargin (TAP, 2 microm) nor free-calcium medium affected its effect. PTP inhibitors and antioxidants inhibited this process, suggesting an increase in ROS generation and PTP opening. In addition, 3NP (0.1 mm) also induces apoptotic cell death. Behavioural changes in animals treated with 3NP (20 mg/kg/day for 4 days) were also attenuated by pre- and co-treatment with vitamin E (VE, 20 mg/kg/day). Taken together, our results show that complex II inhibition could involve Ca2+m release, oxidative stress and cell death that may precede motor alterations in neurodegenerative processes such as HD.  相似文献   

11.
Endogenous amino acid release was examined in rat cerebellar primary cultures comprising more than 95% of glutamatergic granule cells. Eighteen amino acids were determined in the cell extracts and in the release fractions by high performance liquid chromatography, using precolumn derivatization witho-phthaldialdehyde and separation on a reverse-phase column using a multi-step gradient system of two solvents (0.1 M Na+acetate, pH 7.2/methanol: tetrahydrofuran, 97:3). The fluorimetric response was linear, at least in the range of 2–162 pmol, for all the amino acids analysed, with a detection limit of 1 pmole. We observed a good reproducibility in within-assay and between-assay coefficients of variation of the retention times and fluorescence yield. When cultured granule cells were exposed to the excitatory amino acid receptor agonist quisqualic acid (50 M), we observed a net increase in the release of glutamate (3 fold over the baseline) and a smaller increase in that of aspartate (2 fold) and taurine (1.6 fold). Other amino acids were not significantly affected. GABA levels were below detection limits, due to the minimal number of GABAergic neurons present in the cultures.  相似文献   

12.
Pycnogenol® (PYC), a patented combination of bioflavonoids extracted from the bark of French maritime pine (Pinus maritima), scavenges free radicals and promotes cellular health. The protective capacity of PYC against ethanol toxicity of neurons has not previously been explored. The present study demonstrates that in postnatal day 9 (P9) rat cerebellar granule cells the antioxidants vitamin E (VE) and PYC (1) dose dependently block cell death following 400, 800, and 1600 mg/dL ethanol exposure (2) inhibit the ethanol‐induced activation of caspase‐3 in the same model system; and (3) reduce neuronal membrane disruption as assayed by phosphatidylserine translocation to the cell surface. These results suggest that both PYC and VE have the potential to act as therapeutic agents, antagonizing the induction of neuronal cell death by ethanol exposure. © 2004 Wiley Periodicals, Inc. J Neurobiol 59: 261–271, 2004  相似文献   

13.
Zhang YM  Ma B  Gao WY  Wen W  Liu HY 《生理学报》2007,59(1):103-110
本文旨在研究谷氨酸及其受体在噪声致豚鼠螺旋神经节细胞损伤中的作用。实验分为在体和离体两部分。(1)在体实验:豚鼠分为生理盐水(NS,10μL)组,NS(10μL)+噪声组和犬尿喹啉酸(kynurenic acid,KYNA,5mmol/L,10μL)+噪声组,每组15只。用微量注射器经完整圆窗膜表面给予NS或KYNA:暴露于白噪声110dBSPL,1h。在圆窗给药前及噪声暴露后测试听觉脑干诱发电位(auditory brainstem response,ABR)阈值及Ⅲ波幅值,听神经复合动作电位(compound action potential,CAP)阈值及N1波幅值和潜伏期,测试后取基底膜进行透射电镜观察。(2)离体实验:观察高浓度谷氨酸对急性分离的豚鼠螺旋神经节细胞的影响。结果显示,NS+噪声组豚鼠ABR及CAP阈移显著高于KYNA+噪声组,且Ⅲ波和NI波幅值明显降低,潜伏期明显延长。NS+噪声组豚鼠毛细胞及传入神经末梢急性水肿和线粒体结构破坏:KYNA+噪声组豚鼠的毛细胞和传入神经末梢无明显变化。离体胞外施加谷氨酸可引起螺旋神经节细胞逐渐出现水肿、变性,最后死亡。本实验提示,噪声暴露可引起豚鼠听功能损伤,毛细胞/传入神经突触的结构破坏和螺旋神经节细胞变性、死亡:这种损伤可能与噪声暴露引起谷氨酸的过度释放有关;谷氨酸通过其受体介导致使螺旋神经节细胞损伤,谷氨酸受体的广谱拮抗剂KYNA可减轻噪声对螺旋神经节细胞的损伤。  相似文献   

14.
15.
骨骼肌缺血预适应对猪心肌凋亡的影响及阿片受体的作用   总被引:2,自引:0,他引:2  
Xie RQ  Cui W  Hao YM  Liu F  Li BH  Wu JF  Du GY  Zhang T 《中国应用生理学杂志》2006,22(4):474-478,I0003
目的:确定骨骼肌缺血预适应对猪心肌凋亡及其调控基因Bcl-2/Bax的影响,并探讨阿片受体在此机制中可能的作用。方法:采用非开胸法建立猪心脏缺血/再灌注(I/R)模型,通过球囊堵塞左股动脉造成骨骼肌短暂缺血,分别使用阿片受体拮抗剂纳洛酮以及神经节阻断剂六烃己胺进行干预。采用末端探针标记及流式细胞技术检测心肌凋亡细胞及调控基因Bcl-2/Bax,确定各组对以上指标的影响。结果:①和缺血对照组(CONT组)相比,远端预处理后心肌细胞凋亡率明显降低(4.43%±0.74%vs15.4%±1.15%,P<0.05),提示骨骼肌远端预适应(RP)可减少心肌凋亡。②和CONT组相比,远端预处理后Bcl-2/Bax比值明显增高(1.36±0.09vs0.56±0.08,P<0.05),提示RP对心肌凋亡的影响可能通过影响Bcl-2/Bax进行调控。③预处理前使用阿片受体拮抗剂纳洛酮可使以上保护作用减弱(P<0.05),但纳洛酮对CONT组无影响。④预处理前使用神经节阻断剂六烃己胺,不影响RP对心肌的保护作用。结论:骨骼肌缺血预适应减少心肌细胞凋亡,可能通过影响Bcl-2/Bax进行调控;阿片受体可能参与此保护作用,且不通过神经反射进行。  相似文献   

16.
Apoptotic cell death induced by kainic acid (KA) in cultures of rat cerebellar granule cells (CGC) and in different brain regions of Wistar rat pups on postnatal day 21 (P21) was studied. In vitro , KA (100–500 μM) induced a concentration-dependent loss of cell viability in MTT assay and cell death had apoptotic morphology as studied by chromatin staining with propidium iodide (PI). In vivo , twenty-four hours after induction of status epilepticus (SE) by an intraperitoneal KA injection (5 mg/kg) we quantified apoptotic cells in hippocampus (CA1 and CA3), parietal cortex and cerebellum using PI staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) technique. We report that dantrolene, a specific ryanodine receptor antagonist, was able to significantly reduce the apoptotic cell death in CGC cultures and in hyppocampal CA1 and parietal cortex regions. Our finding can be valuable for neuroprotective therapy strategies in patients with repeated generalized seizures or status epilepticus.  相似文献   

17.
Previously, we reported that apoptosis of cerebellar granular neurons induced by low‐K+ and serum‐free (LK‐S) was associated with an increase in the A‐type K+ channel current (IA), and an elevated expression of main α‐subunit of the IA channel, which is known as Kv4.2 and Kv4.3. Here, we show, as assessed by quantitative RT‐PCR and whole‐cell recording, that besides Kv4.2 and Kv4.3, Kv1.1 is very important for IA channel. The expression of Kv1.1 was elevated in the apoptotic neurons, while silencing Kv1.1 expression by siRNA reduced the IA amplitude of the apoptotic neuron, and increased neuron viability. Inhibiting Kv1.1 current by dendrotoxin‐K evoked a similar effect of reduction of IA amplitude and protection of neurons. Applying a protein kinase C (PKC) activator, phorbol ester acetate A (PMA) mimicked the LK‐S‐induced neuronal apoptotic effect, enhanced the IA amplitude and reduced the granule cell viability. The PKC inhibitor, bisindolylmaleimide I and Gö6976 protected the cell against apoptosis induced by LK‐S. After silencing the Kv1.1 gene, the effect of PMA on the residual K+ current was reduced significantly. Quantitative RT‐PCR and Western immunoblot techniques revealed that LK‐S treatment and PMA increased the level of the expression of Kv1.1, in contrast, bisindolylmaleimide I inhibited Kv1.1 expression. In addition, the activation of the PKC isoform was identified in apoptotic neurons. We thus conclude that in the rat cerebellar granule cell, the IA channel associated with apoptotic neurons is encoded mainly by the Kv1.1 gene, and that the PKC pathway promotes neuronal apoptosis by a brief modulation of the IA amplitude and a permanent increase in the levels of expression of the Kv1.1 α‐subunit.  相似文献   

18.
The apoptosis of cerebellar granule neurons (CGN) induced by low potassium in the extracellular medium is a model of neuronal apoptosis where an overshot of reactive oxygen species (ROS) triggers the neuronal death. In this work, using dihydroethidium and L-012 as specific dyes for superoxide anion detection we show that this ROS overshot can be accounted by an increased release of superoxide anion to the extracellular medium. The amplitude and time course of the increase of superoxide anion observed early during apoptosis correlated with the increase of the content of soluble cytochrome b(5), a substrate of the NADH-dependent oxidase activity of the cytochrome b(5) reductase associated with lipid rafts in CGN. Western blotting and immunofluorescence microscopy approaches, including fluorescence energy transfer, pointed out an enhanced clustering of cytochrome b(5) reductase within caveolins-rich lipid rafts microdomains. Protein/protein docking analysis suggests that cytochrome b(5) reductase can form complexes with caveolins 1α, 1β and 2, playing electrostatic interactions a major role in this association. In conclusion, our results indicate that overstimulation of cytochrome b(5) reductase associated with lipid rafts can account for the overshot of plasma membrane-focalized superoxide anion production that triggers the entry of CGN in the irreversible phase of apoptosis. This article is part of a Special Issue entitled: Proteomics: The clinical link.  相似文献   

19.
Lithium protects cerebellar granule cells from apoptosis induced by low potassium, and also from other apoptotic stimuli. However, the precise mechanism by which this occurs is not understood. When cerebellar granule cells were switched to low potassium medium, the activation of caspase 3 was detected within 6 h, suggesting a role of caspase 3 in mediating apoptosis under conditions of low potassium. In the same conditions, lithium (5 mM) inhibited the activation of caspase 3 induced by low potassium. As lithium did not inhibit caspase 3 activity in vitro, these results suggest that this ion inhibits an upstream component that is required for caspase 3 activation. Lithium is known to inhibit a kinase termed glycogen sythase kinase 3 (GSK3), which is implicated in the survival pathway of phosphatidylinositol 3-kinase/protein kinase B (PI3K/PKB). Here we demonstrate that low potassium in the absence of lithium induces the dephosphorylation, and therefore the activation, of GSK3. However, when lithium was present, GSK3 remained phosphorylated at the same level as observed under conditions of high potassium. Low potassium induced the dephosphorylation and inactivation of PKB, whereas when lithium was present PKB was not dephosphorylated. Our results allow us to propose a new hypothesis about the action mechanism of lithium, this ion could inhibit a serine-threonine phosphatase induced by potassium deprivation.  相似文献   

20.
Rosmarinic acid (RosA), frequently found as a secondary metabolite in herbs and medicinal plants, has exhibited antioxidative and anti-inflammatory activities. RosA was shown to inhibit the proliferation and induce apoptosis of Jurkat T cells but the mechanism of action of RosA in apoptosis remains elusive. RosA inhibited the proliferation of Jurkat cells in a dose-dependent manner by suppressing the expression of cyclin D3 and p21Cip1/Waf1 and up-regulating p27Kip1. RosA induced apoptosis of Jurkat cells in a dose-dependent manner and failed to protect them from hydrogen peroxide (H2O2)-mediated apoptosis. Induction of apoptosis by RosA correlated with suppression of Bcl-2 but not of Bak or PUMA. Overexpression of Bcl-2 protected Jurkat cells from both H2O2- and RosA-induced apoptosis by altering the ratio of anti- to pro-apoptotic members of the Bcl-2 family. In conclusion, RosA inhibited Jurkat cell proliferation by altering the expression of cyclins and cyclin-dependent kinase inhibitors and induced apoptosis most likely acting through the mitochondrial pathway and possessed no anti-oxidant properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号