首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MacRae IJ  Segel IH  Fisher AJ 《Biochemistry》2001,40(23):6795-6804
ATP sulfurylase from Penicillium chrysogenum is an allosterically regulated enzyme composed of six identical 63.7 kDa subunits (573 residues). The C-terminal allosteric domain of each subunit is homologous to APS kinase. In the presence of APS, the enzyme crystallized in the orthorhombic space group (I222) with unit cell parameters of a = 135.7 A, b = 162.1 A, and c = 273.0 A. The X-ray structure at 2.8 A resolution established that the hexameric enzyme is a dimer of triads in the shape of an oblate ellipsoid 140 A diameter x 70 A. Each subunit is divided into a discreet N-terminal domain, a central catalytic domain, and a C-terminal allosteric domain. Two molecules of APS bound per subunit clearly identify the catalytic and allosteric domains. The sequence 197QXRN200 is largely responsible for anchoring the phosphosulfate group of APS at the active site of the catalytic domain. The specificity of the catalytic site for adenine nucleotides is established by specific hydrogen bonds to the protein main chain. APS was bound to the allosteric site through sequence-specific interactions with amino acid side chains that are conserved in true APS kinase. Within a given triad, the allosteric domain of one subunit interacts with the catalytic domain of another. There are also allosteric-allosteric, allosteric-N-terminal, and catalytic-catalytic domain interactions across the triad interface. The overall interactions-each subunit with four others-provide stability to the hexamer as well as a way to propagate a concerted allosteric transition. The structure presented here is believed to be the R state. A solvent channel, 15-70 A wide exists along the 3-fold axis, but substrates have access to the catalytic site only from the external medium. On the other hand, a surface "trench" links each catalytic site in one triad with an allosteric site in the other triad. This trench may be a vestigial feature of a bifunctional ("PAPS synthetase") ancestor of fungal ATP sulfurylase.  相似文献   

2.
Protein kinase A (cAMP dependent protein kinase catalytic subunit, EC 2.7.11.11) binds simultaneously ATP and a phosphorylatable peptide. These structurally dissimilar allosteric ligands influence the binding effectiveness of each other. The same situation is observed with substrate congeners, which reversibly inhibit the enzyme. In this review these allosteric effects are quantified using the interaction factor, which compares binding effectiveness of ligands with the free enzyme and the pre-loaded enzyme complex containing another ligand. This analysis revealed that the allosteric effect depends upon structure of the interacting ligands, and the principle “better binding: stronger allostery” observed can be formalized in terms of linear free-energy relationships, which point to similar mechanism of the allosteric interaction between the enzyme-bound substrates and/or inhibitor molecules. On the other hand, the type of effect is governed by ligand binding effectiveness and can be inverted from positive allostery to negative allostery if we move from effectively binding ligands to badly binding compounds. Thus the outcome of the allostery in this monomeric enzyme is the same as defined by classical theories for multimeric enzymes: making the enzyme response more efficient if appropriate ligands bind.  相似文献   

3.
J Cherfils  P Vachette  J Janin 《Biochimie》1990,72(8):617-624
The allosteric properties of aspartate transcarbamylase from E coli have been investigated by a combination of genetic, biochemical and structural studies. Based on the X-ray structures of the enzyme in T and R state established by Lipscomb et al, we have analyzed the interactions between the 12 polypeptide chains and have identified subunit interfaces that play a major part in the allosteric mechanism: the c1c4 interface between the 2 catalytic trimers, and one of 2 different interfaces between catalytic and regulatory chains, the c1r4 interface, which exists only in T state. We have modelled mutations affecting these interfaces: mutation pAR5 in the gene coding for r chains concerns the c1r4 interface, mutation Tyr----Phe 240 in the gene coding for c chains, the c1c4 interface. Both mutant proteins have reduced cooperativity and/or allosteric regulation by CTP and ATP. Molecular mechanic simulations lead to specific proposals for the structural origin of these effects, and some of the proposals can be checked by site-directed mutagenesis. Finally, we have modelled substrates bound at the active site of the T state, which binds aspartate less tightly than the R state and for which X-ray structures of bound substrate analogs were not available.  相似文献   

4.
Phosphorylation of isolated cytochrome c oxidase from bovine kidney and heart, and of the reconstituted heart enzyme, with protein kinase A, cAMP and ATP turns on the allosteric ATP-inhibition at high ATP/ADP ratios. Also incubation of isolated bovine liver mitochondria only with cAMP andATP turns on, and subsequent incubation with Ca2+ turns off the allosteric ATP-inhibition of cytochrome c oxidase. In the bovine heart enzyme occur only three consensus sequences for cAMP-dependent phosphorylation (in subunits I, III and Vb). The evolutionary conservation of RRYS441 at the cytosolic side of subunit I, together with the above results, suggest that phosphorylation of Ser441 turns on the allosteric ATP-inhibition of cytochrome c oxidase. The results support the 'molecular-physiological hypothesis' [29], which proposes a low mitochondrial membrane potential through the allosteric ATP-inhibition. A hormone- or agonist-stimulated increase of cellular [Ca2+] is suggested to activate a mitochondrial protein phosphatase which dephosphorylates cytochrome c oxidase, turns off the allosteric ATP-inhibition and results in increase of mitochondrial membrane potential and ROS formation.  相似文献   

5.
The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked inhibition.  相似文献   

6.
Phosphorylation of isolated cytochrome c oxidase from bovine kidney and heart, and of the reconstituted heart enzyme, with protein kinase A, cAMP and ATP turns on the allosteric ATP-inhibition at high ATP/ADP ratios. Also incubation of isolated bovine liver mitochondria only with cAMP and ATP turns on, and subsequent incubation with Ca2+ turns off the allosteric ATP-inhibition of cytochrome c oxidase. In the bovine heart enzyme occur only three consensus sequences for cAMP-dependent phosphorylation (in subunits I, III and Vb). The evolutionary conservation of RRYS441 at the cytosolic side of subunit I, together with the above results, suggest that phosphorylation of Ser441 turns on the allosteric ATP-inhibition of cytochrome c oxidase. The results support the 'molecular-physiological hypothesis' [29], which proposes a low mitochondrial membrane potential through the allosteric ATP-inhibition. A hormone- or agonist-stimulated increase of cellular [Ca2+]] is suggested to activate a mitochondrial protein phosphatase which dephosphorylates cytochrome c oxidase, turns off the allosteric ATP-inhibition and results in increase of mitochondrial membrane potential and ROS formation.  相似文献   

7.
Kung G  Runquist JA  Miziorko HM  Harrison DH 《Biochemistry》1999,38(46):15157-15165
Bacterial phosphoribulokinases (PRKs) are octameric members of the adenylate kinase family of enzymes. The enzyme is allosterically activated by NADH and allosterically inhibited by AMP. We have determined the crystal structure of PRK from Rhodobacter sphaeroides bound to the ATP analogue AMP-PCP to a resolution of 2.6 A. The structure reveals that the ATP analogue does not bind to the canonical ATP site found in adenylate kinase family members. Rather, the AMP-PCP binds in two different orientations at the interface of three of the monomers in the octamer. This interface was previously characterized as having an unusually large number of arginine residues. Of the five arginine residues that are near the bound nucleotide, one (Arg 221) is highly conserved in both prokaryotic and eukaryotic (nonallosterically regulated) PRKs, two (Arg 234 and Arg 257) are on a second subunit and conserved in only prokaryotic PRKs, and two (Arg 30 and Arg 31) are on a third subunit with only one of them (Arg 31) conserved in prokaryotic PRKs. Each of these arginine residues was converted by site-directed mutagenesis to alanine. Fluorescence binding data suggest that none of these arginines are involved in active site ATP binding and that Arg 234 and Arg 257 on the second subunit are directly involved in NADH binding, while the other arginines have a minimal effect on NADH binding. While the wild-type enzyme exhibits low maximal activity and hyperbolic kinetics with respect to ATP in the absence of NADH and high maximal activity and sigmoidal kinetics in the presence of NADH, the R31A mutant exhibits identical hyperbolic kinetics with respect to ATP in the presence or absence of NADH. Thus, the transmission of allosteric information from one subunit to another is conducted through a single path that includes NADH and Arg 31.  相似文献   

8.
Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial electron transport chain, is regulated by isozyme expression, allosteric effectors such as the ATP/ADP ratio, and reversible phosphorylation. Of particular interest is the "allosteric ATP-inhibition," which has been hypothesized to keep the mitochondrial membrane potential at low healthy values (<140 mV), thus preventing the formation of superoxide radical anions, which have been implicated in multiple degenerative diseases. It has been proposed that the "allosteric ATP-inhibition" is switched on by the protein kinase A-dependent phosphorylation of COX. The goal of this study was to identify the phosphorylation site(s) involved in the "allosteric ATP-inhibition" of COX. We report the mass spectrometric identification of four new phosphorylation sites in bovine heart COX. The identified phosphorylation sites include Tyr-218 in subunit II, Ser-1 in subunit Va, Ser-2 in subunit Vb, and Ser-1 in subunit VIIc. With the exception of Ser-2 in subunit Vb, the identified phosphorylation sites were found in enzyme samples with and without "allosteric ATP inhibition," making Ser-2 of subunit Vb a candidate site enabling allosteric regulation. We therefore hypothesize that additional phosphorylation(s) may be required for the "allosteric ATP-inhibition," and that these sites may be easily dephosphorylated or difficult to identify by mass spectrometry.  相似文献   

9.
Previous studies have shown that the S5' beta-strand (r93-r97) of the regulatory polypeptides of the aspartate transcarbamoylases (ATCases) from Serratia marcescens and Escherichia coli are responsible for their diverged allosteric regulatory patterns, including conversion of CTP from an inhibitor in E. coli to an activator in S. marcescens. Similarly, mutation of residues located in the interface between the allosteric and the zinc domains resulted in conversion of the ATP responses of the E. coli enzyme from activation to inhibition, suggesting that this interface not only mediates but also discriminates the allosteric responses of ATP and CTP. To further decipher the roles and the interrelationships of these regions in allosteric communication, allosteric-zinc interface mutations (Y77F and V106A) have been introduced into both the native and the S5' beta-strand chimeric backgrounds. While the significance of this interface in the allosteric regulation has been confirmed, there is no direct evidence supporting the presence of distinct pathways for the ATP and CTP signals through this interface. The analysis of the mutational effects reported here suggested that the S5' beta-strand transmits the allosteric signal by modulating the hydrophobic allosteric-zinc interface rather than disturbing the allosteric ligand binding. Intragenic suppression by substitutions in the hydrophobic interface between the allosteric and the zinc domains of the regulatory chains resulted in the partial recovery of allosteric responses in the EC:rS5'sm chimera and reduced the activation by ATP in the Sm:rS5'ec chimera. Thus, it seems that there is a synergy between these two structural units.  相似文献   

10.
Kinetics of thermal inactivation of acrylodan-labeled cAMP dependent protein kinase catalytic subunit, its binary complexes with ATP and peptide inhibitor PKI[5–24], respectively, and the ternary complex involving both of these ligands were studied at different temperatures (5–50 °C). The thermodynamic parameters ΔH and ΔS for ligand binding equilibria as well as for the allosteric interaction between the binding sites of these ligands were obtained by using the Van’t Hoff analysis. The results indicated that more inter- and intra-molecular non-covalent bonds were involved in ATP binding with the protein when compared to the peptide binding. Similarly, nucleotide and peptide binding steps were accompanied with different entropy effects, while almost no entropy change accompanied PKI[5–24] binding, suggesting that the protein flexibility was not affected in this case. Differently from the binary complex formation the ternary complex formation was accompanied by a significant entropy change and with intensive formation of new non-covalent interactions (ΔH). At the same time both ligand binding steps as well as the allosteric interaction between ligand binding sites could be described by a common entropy–enthalpy compensation plot, pointing to a similar mechanism of these phenomena. It was concluded that numerous weak interactions govern the allostery of cAMP dependent protein kinase catalytic subunit.  相似文献   

11.
Quinlan RJ  Reinhart GD 《Biochemistry》2006,45(38):11333-11341
Differences between the crystal structures of inhibitor-bound and uninhibited forms of phosphofructokinase (PFK) from B. stearothermophilus have led to a structural model for allosteric inhibition by phosphoenolpyruvate (PEP) wherein a dimer-dimer interface within the tetrameric enzyme undergoes a quaternary shift. We have developed a labeling and hybridization technique to generate a tetramer with subunits simultaneously containing two different extrinsic fluorophores in known subunit orientations. This construct has been utilized in the examination of the effects of allosteric ligand and substrate binding on the subunit affinities of tetrameric PFK using several biophysical and spectroscopic techniques including 2-photon, dual-channel fluorescence correlation spectroscopy (FCS). We demonstrate that PEP-binding at the allosteric site is sufficient to reduce the affinity of the active site interface from beyond the limits of experimental detection to nanomolar affinity, while conversely strengthening the interface at which it is bound. The reduced interface affinity is specific to inhibitor binding because binding the activator ADP at the same allosteric site causes no reduction in subunit affinity. With inhibitor bound, the weakened subunit affinity has allowed the kinetics of dimer association to be elucidated.  相似文献   

12.
Escherichia coli glycerol kinase (GK) displays "half-of-the-sites" reactivity toward ATP and allosteric regulation by fructose 1, 6-bisphosphate (FBP), which has been shown to promote dimer-tetramer assembly and to inhibit only tetramers. To probe the role of tetramer assembly, a mutation (Ser58-->Trp) was designed to sterically block formation of the dimer-dimer interface near the FBP binding site [Ormo, M., Bystrom, C., and Remington, S. J. (1998) Biochemistry 37, 16565-16572]. The substitution did not substantially change the Michaelis constants or alter allosteric regulation of GK by a second effector, the phosphocarrier protein IIAGlc; however, it eliminated FBP inhibition. Crystal structures of GK in complex with different nontransferable ATP analogues and glycerol revealed an asymmetric dimer with one subunit adopting an open conformation and the other adopting the closed conformation found in previously determined structures. The conformational difference is produced by a approximately 6.0 degrees rigid-body rotation of the N-terminal domain with respect to the C-terminal domain, similar to that observed for hexokinase and actin, members of the same ATPase superfamily. Two of the ATP analogues bound in nonproductive conformations in both subunits. However, beta, gamma-difluoromethyleneadenosine 5'-triphosphate (AMP-PCF2P), a potent inhibitor of GK, bound nonproductively in the closed subunit and in a putative productive conformation in the open subunit, with the gamma-phosphate placed for in-line transfer to glycerol. This asymmetry is consistent with "half-of-the-sites" reactivity and suggests that the inhibition of GK by FBP is due to restriction of domain motion.  相似文献   

13.
Yeast AMP deaminase is allosterically activated by ATP and MgATP and inhibited by GTP and PO4. The tetrameric enzyme binds 2 mol each of ATP, GTP, and PO4/subunit with Kd values of 8.4 +/- 4.0, 4.1 +/- 0.6, and 169 +/- 12 microM, respectively. At 0.7 M KCl, ATP binds to the enzyme, but no longer activates. Titration with coformycin 5'-monophosphate, a slow, tight-binding inhibitor, indicates a single catalytic site/subunit. ATP and GTP bind at regulatory sites distinct from the catalytic site and their binding is mutually exclusive. Inorganic phosphate competes poorly with ATP for the ATP sites (Kd = 20.1 +/- 4.1 mM). However, near-saturating ATP reduces the moles of phosphate bound per subunit to 1 PO4, which binds with a Kd = 275 +/- 22 microM. In the presence of ATP, PO4 cannot effectively compete with ATP for the nucleotide triphosphate sites. The PO4 which binds in the presence of ATP is competitive with AMP at the catalytic site since the Kd equals the kinetic inhibition constant for PO4. Initial reaction rate curves are a cooperative function of AMP concentration and activation by ATP is also cooperative. However, no cooperativity is observed in the binding of any of the regulator ligands and ATP binding and kinetic activation by ATP is independent of substrate analog concentration. Cooperativity in initial rate curves results, therefore, from altered rate constants for product formation from each (enzyme.substrate)n species and not from cooperative substrate binding. The traditional cooperative binding models of allosteric regulation do not apply to yeast AMP deaminase, which regulates catalytic activity by kinetic control of product formation. The data are used to estimate the rates of AMP hydrolysis under reported metabolite concentrations in yeast.  相似文献   

14.
The influence of ATP on complex formation of phosphorylase kinase (PhK) with glycogen in the presence of Ca(2+) and Mg(2+) has been studied. The initial rate of complex formation decreases with increasing ATP concentration, the dependence of the initial rate on the concentration of ATP having a cooperative character. Formation of the complex of PhK with glycogen in the presence of ATP occurs after a lag period, which increases with increasing ATP concentration. The dependence of the initial rate of complex formation (v) on the concentration of non-hydrolyzed ATP analogue, beta,gamma-methylene-ATP, follows the hyperbolic law. A correlation between PhK-glycogen complex formation and (32)P incorporation catalyzed by PhK itself and by the catalytic subunit of cAMP-dependent protein kinase has been shown. For ADP (the product and allosteric effector of the PhK reaction) the dependence of v on ADP concentration has a complicated form, probably due to the sequential binding of ADP at two allosteric sites on the beta subunit and the active site on the gamma subunit.  相似文献   

15.
Aspartate transcarbamoylase undergoes a domain closure in the catalytic chains upon binding of the substrates that initiates the allosteric transition. Interdomain bridging interactions between Glu(50) and both Arg(167) and Arg(234) have been shown to be critical for stabilization of the R state. A hybrid version of the enzyme has been generated in vitro containing one wild-type catalytic subunit, one catalytic subunit in which Glu(50) in each catalytic chain has been replaced by Ala (E50A), and wild-type regulatory subunits. Thus, the hybrid enzyme has one catalytic subunit capable of domain closure and one catalytic subunit incapable of domain closure. The hybrid does not behave as a simple mixture of the constituent subunits; it exhibits lower catalytic activity and higher aspartate affinity than would be expected. As opposed to the wild-type enzyme, the hybrid is inhibited allosterically by CTP at saturating substrate concentrations. As opposed to the E50A holoenzyme, the hybrid is not allosterically activated by ATP at saturating substrate concentrations. Small angle x-ray scattering showed that three of the six interdomain bridging interactions in the hybrid is sufficient to cause the global structural change to the R state, establishing the critical nature of these interactions for the allosteric transition of aspartate transcarbamoylase.  相似文献   

16.
T M Martensen  T E Mansour 《Biochemistry》1976,15(23):4973-4980
The allosteric regulation of heart phosphofructokinase was studied at pH 6.9 with an alternative substrate, fructose 6-sulfate. The alternative substrate allowed kinetic studies to be carried out at high enzyme concentrations (0.1 mg/ml) where the effect of allosteric ligands on enzyme physical structure has been studied. A Km for ATP binding (8-10 muM) in the presence of saturating AMP concentrations was found which agreed well with the value obtained at pH 8.2, ATP inhibitory effects closely followed saturation of its substrate site. Hill plots for ATP inhibition gave an interaction coefficient of 3.5 indicating cooperatively between at least four enzyme subunits. Neither AMP nor fructose 6-sulfate affected the cooperativity between the ATP inhibitory sites but only increased the inhibitory threshold. As the ATP concentration was increased from suboptimal to inhibitory levels, interaction coefficients for AMP and fructose 6-sulfate changed from 1 to 2. Increasing citrate concentration resulted in an increase in the interaction coefficient for fructose 6-sulfate to a value of 1.9. Citrate inhibition was synergistic with ATP inhibition with an interaction coefficient of 2. The data indicate that allosteric kinetics of the enzyme can be shown at high enzyme concentrations with the alternative substrate. ATP inhibition appears to involve interaction between at least four subunits, while citrate, AMP, and fructose 6-sulfate interact minimally with two subunits.  相似文献   

17.
The effects of the allosteric ligands UMP, IMP, and ornithine on the partial reactions catalyzed by Escherichia coli carbamyl phosphate synthetase have been examined. Both of these reactions, a HCO3(-)-dependent ATP synthesis reaction and a carbamyl phosphate-dependent ATP synthesis reaction, follow bimolecular ordered sequential kinetic mechanisms. In the ATPase reaction, MgATP binds before HCO3- as established previously for the overall reaction catalyzed by carbamyl phosphate synthetase [Raushel, F. M., Anderson, P. M., & Villafranca, J. J. (1978) Biochemistry 17, 5587-5591]. The initial velocity kinetics for the ATP synthesis reaction indicate that MgADP binds before carbamyl phosphate in an equilibrium ordered mechanism except in the presence of ornithine. Determination of true thermodynamic linked-function parameters describing the impact of allosteric ligands on the binding interactions of the first substrate to bind in an ordered mechanism requires experiments to be performed in which both substrates are varied even if only one is apparently affected by the allosteric ligands. In so doing, we have found that IMP has little effect on the overall reaction of either of these two partial reactions. UMP and ornithine, which have a pronounced effect on the apparent Km for MgATP in the overall reaction, both substantially change the thermodynamic dissociation constant for MgADP from the binary E-MgADP complex, Kia, in the ATP synthesis reaction, with UMP increasing Kia 15-fold and ornithine decreasing Kia by 18-fold. By contrast, only UMP substantially affects the Kia for MgATP in the ATPase reaction, increasing it by 5-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The three-dimensional structure of the large subunit of the first member of a class Ib ribonucleotide reductase, R1E of Salmonella typhimurium, has been determined in its native form and together with three allosteric effectors. The enzyme contains the characteristic ten-stranded alpha/beta-barrel with catalytic residues at a finger loop in its center and with redox-active cysteine residues at two adjacent barrel strands. Structures where the redox-active cysteine residues are in reduced thiol form and in oxidized disulfide form have been determined revealing local structural changes. The R1E enzyme differs from the class Ia enzyme, Escherichia coli R1, by not having an overall allosteric regulation. This is explained from the structure by differences in the N-terminal domain, which is about 50 residues shorter and lacks the overall allosteric binding site. R1E has an allosteric substrate specificity regulation site and the binding site for the nucleotide effectors is located at the dimer interface similarly as for the class Ia enzymes. We have determined the structures of R1E in the absence of effectors and with dTTP, dATP and dCTP bound. The low affinity for ATP at the specificity site is explained by a tyrosine, which hinders nucleotides containing a 2'-OH group to bind.  相似文献   

19.
PRPP (phosphoribosylpyrophosphate) is an important metabolite essential for nucleotide synthesis and PRS (PRPP synthetase) catalyses synthesis of PRPP from R5P (ribose 5-phosphate) and ATP. The enzymatic activity of PRS is regulated by phosphate ions, divalent metal cations and ADP. In the present study we report the crystal structures of recombinant human PRS1 in complexes with SO4(2-) ions alone and with ATP, Cd2+ and SO4(2-) ions respectively. The AMP moiety of ATP binds at the ATP-binding site, and a Cd2+ ion binds at the active site and in a position to interact with the beta- and gamma-phosphates of ATP. A SO4(2-) ion, an analogue of the activator phosphate, was found to bind at both the R5P-binding site and the allosteric site defined previously. In addi-tion, an extra SO4(2-) binds at a site at the dimer interface between the ATP-binding site and the allosteric site. Binding of this SO4(2-) stabilizes the conformation of the flexible loop at the active site, leading to the formation of the active, open conformation which is essential for binding of ATP and initiation of the catalytic reaction. This is the first time that structural stabilization at the active site caused by binding of an activator has been observed. Structural and biochemical data show that mutations of some residues at this site influence the binding of SO4(2-) and affect the enzymatic activity. The results in the present paper suggest that this new SO4(2-)-binding site is a second allosteric site to regulate the enzymatic activity which might also exist in other eukaryotic PRSs (except plant PRSs of class II), but not in bacterial PRSs.  相似文献   

20.
The involvement of subunit 6 (a) in the interface between yeast ATP synthase monomers has been highlighted. Based on the formation of a disulfide bond and using the unique cysteine 23 as target, we show that two subunits 6 are close in the inner mitochondrial membrane and in the solubilized supramolecular forms of the yeast ATP synthase. In a null mutant devoid of supernumerary subunits e and g that are involved in the stabilization of ATP synthase dimers, ATP synthase monomers are close enough in the inner mitochondrial membrane to make a disulfide bridge between their subunits 6, and this proximity is maintained in detergent extract containing this enzyme. The cross-linking of cysteine 23 located in the N-terminal part of the first transmembrane helix of subunit 6 suggests that this membrane-spanning segment is in contact with its counterpart belonging to the ATP synthase monomer that faces it and participates in the monomer-monomer interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号