首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The majority of familial Alzheimer's disease cases have been attributed to mutations in the presenilin 1 (PS1) gene. PS1 is synthesized as an inactive holoprotein that undergoes endoproteolytic processing to generate a functional N- and C-terminal heterodimer (NTF and CTF, respectively). We identified a single residue in PS1, Ser(397), which regulates the CTF levels in a population of dimer that has a rapid turnover. This residue is part of a highly conserved glycogen synthase kinase-3beta (GSK-3beta) consensus phosphorylation site within the loop domain of PS1. Site-directed mutagenesis at the Ser(397) position increased levels of PS1 CTF but not NTF or holoprotein. Similar increases in only CTF levels were seen when cells expressing wild type PS1 were treated with lithium chloride, an inhibitor of GSK-3beta. Both wild type and PS1 S397A CTF displayed a biphasic turnover, reflecting rapidly degraded and stable populations. Rapid turnover was delayed for mutant PS1 S397A, causing increased CTF. These data demonstrate that PS1 NTF.CTF endoproteolytic fragments are generated in excess, that phosphorylation at Ser(397) by GSK-3beta regulates the discard of excess CTF, and that the disposal of surplus NTF is mediated by an independent mechanism. Overall, the results indicate that production of active NTF.CTF dimer is more complex than limited endoproteolysis of PS1 holoprotein and instead involves additional regulatory events.  相似文献   

2.
3.
Presenilin 1, a causative gene product of familial Alzheimer disease, has been reported to be localized mainly in the endoplasmic reticulum and Golgi membranes. However, endogenous Presenilin 1 also localizes at the plasma membrane as a biologically active molecule. Presenilin 1 interacts with N-cadherin/beta-catenin to form a trimeric complex at the synaptic site through its loop domain, whose serine residues (serine 353 and 357) can be phosphorylated by glycogen synthase kinase 3beta. Here, we demonstrate that cell-surface expression of Presenilin 1/gamma-secretase is enhanced by N-cadherin-based cell-cell contact. Physical interaction between Presenilin 1 and N-cadherin/beta-catenin plays an important role in this process. Glycogen synthase kinase 3beta-mediated phosphorylation of Presenilin 1 reduces its binding to N-cadherin, thereby down-regulating its cell-surface expression. Moreover, reduction of the Presenilin 1.N-cadherin.beta-catenin complex formation leads to an impaired activation of contact-mediated phosphatidylinositol 3-kinase/Akt cell survival signaling. Furthermore, phosphorylation of Presenilin 1 hinders epsilon-cleavage of N-cadherin, whereas epsilon-cleavage of APP remained unchanged. This is the first report that clarifies the regulatory mechanism of Presenilin 1/gamma-secretase with respect to its subcellular distribution and its differential substrate cleavage. Because the cleavage of various membrane proteins by Presenilin 1/gamma-cleavage is involved in cellular signaling, glycogen synthase kinase 3beta-mediated phosphorylation of Presenilin 1 should be deeply associated with signaling functions. Our findings indicate that the abnormal activation of glycogen synthase kinase 3beta can reduce neuronal viability and synaptic plasticity via modulating Presenilin 1/N-cadherin/beta-catenin interaction and thus have important implications in the pathophysiology of Alzheimer disease.  相似文献   

4.
beta-catenin is a multifunctional protein involved in cell-cell adhesion and the Wnt signaling pathway. beta-Catenin is activated upon its dephosphorylation, an event triggered by Dishevelled (Dvl)-mediated phosphorylation and deactivation of glycogen synthase kinase-3beta (GSK-3beta). In skeletal muscle, both insulin and exercise decrease GSK-3beta activity, and we tested the hypothesis that these two stimuli regulate beta-catenin. Immunoblotting demonstrated that Dvl, Axin, GSK-3beta, and beta-catenin proteins are expressed in rat red and white gastrocnemius muscles. Treadmill running exercise in vivo significantly decreased beta-catenin phosphorylation in both muscle types, with complete dephosphorylation being elicited by maximal exercise. beta-Catenin dephosphorylation was intensity dependent, as dephosphorylation was highly correlated with muscle glycogen depletion during exercise (r(2) = 0.84, P < 0.001). beta-Catenin dephosphorylation was accompanied by increases in GSK-3beta Ser(9) phosphorylation and Dvl-GSK-3beta association. In contrast to exercise, maximal insulin treatment (1 U/kg body wt) had no effect on skeletal muscle beta-catenin phosphorylation or Dvl-GSK-3beta interaction. In conclusion, exercise in vivo, but not insulin, increases the association between Dvl and GSK-3beta in skeletal muscle, an event paralleled by beta-catenin dephosphorylation.  相似文献   

5.
6.
Phosphatidylinositol 3-kinase (PI3K) promotes cell survival and communication by activating its downstream effector Akt kinase. Here we show that PS1, a protein involved in familial Alzheimer's disease (FAD), promotes cell survival by activating the PI3K/Akt cell survival signaling. This function of PS1 is unaffected by gamma-secretase inhibitors. Pharmacological and genetic evidence indicates that PS1 acts upstream of Akt, at or before PI3K kinase. PS1 forms complexes with the p85 subunit of PI3K and promotes cadherin/PI3K association. Furthermore, conditions that inhibit this association prevent the PS1-induced PI3K/Akt activation, indicating that PS1 stimulates PI3K/Akt signaling by promoting cadherin/PI3K association. By activating PI3K/Akt signaling, PS1 promotes phosphorylation/inactivation of glycogen synthase kinase-3 (GSK-3), suppresses GSK-3-dependent phosphorylation of tau at residues overphosphorylated in AD and prevents apoptosis of confluent cells. PS1 FAD mutations inhibit the PS1-dependent PI3K/Akt activation, thus promoting GSK-3 activity and tau overphosphorylation at AD-related residues. Our data raise the possibility that PS1 may prevent development of AD pathology by activating the PI3K/Akt signaling pathway. In contrast, FAD mutations may promote AD pathology by inhibiting this pathway.  相似文献   

7.
Twomey C  McCarthy JV 《FEBS letters》2006,580(17):4015-4020
Previously we described presenilin-1 (PS1) as a GSK-3beta substrate [Kirschenbaum, F., Hsu, S.C., Cordell, B. and McCarthy, J.V. (2001) Substitution of a glycogen synthase kinase-3beta phosphorylation site in presenilin 1 separates presenilin function from beta-catenin signalling. J. Biol. Chem. 276, 7366-7375; Kirschenbaum, F., Hsu, S.C., Cordell, B. and McCarthy, J.V. (2001) Glycogen synthase kinase-3beta regulates presenilin 1 C-terminal fragment levels. J. Biol. Chem. 276, 30701-30707], though it has not been determined whether PS1 is a primed or unprimed GSK-3beta substrate. A means of separating GSK-3beta activity toward primed and unprimed substrates was identified in the GSK-3beta-R96A phosphate binding pocket mutant [Frame, S., Cohen, P. and Biondi, R.M. (2001) A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Cell 7, 1321-1327], which is unable to phosphorylate primed but retains the ability to phosphorylate unprimed GSK-3beta substrates. By using wild type GSK-3beta, GSK-3beta-R96A, and a pharmacological modulator of GSK-3beta activity, we demonstrate that PS1 is an unprimed GSK-3beta substrate. These findings have important implications for regulation of PS1 function and the pathogenesis of Alzheimer's disease.  相似文献   

8.
Activation of the canonical Wnt signalling pathway results in stabilisation and nuclear translocation of beta-catenin. In the absence of a Wnt signal, beta-catenin is phosphorylated at four conserved serine and threonine residues at the N-terminus of the protein, which results in beta-catenin ubiquitination and proteasome-dependent degradation. The phosphorylation of three of these residues, Thr41, Ser37, and Ser33, is mediated by glycogen synthase kinase-3 (GSK-3) in a sequential manner, beginning from the C-terminal Thr41. It has recently been shown that the GSK-3 dependent phosphorylation of beta-catenin requires prior priming through phosphorylation of Ser45. However, it is not known whether phosphorylation of Ser45 is carried out by GSK-3 itself or by an alternative kinase. In this study, the phosphorylation of beta-catenin at Ser45 was characterised using a phospho-specific antibody. GSK-3beta was found to be unable to phosphorylate beta-catenin at Ser45 in vitro and in intact cells. However, inhibition of GSK-3 in intact cells reduced Ser45 phosphorylation, suggesting that GSK-3 kinase activity is required for the phosphorylation event. In vitro, CK1, but not CK2, phosphorylates Ser45. Ser45 phosphorylation in intact cells is not mediated by CK1varepsilon, a known positive regulator of Wnt signalling, as overexpression of this kinase leads to decreased phosphorylation levels. In conclusion, phosphorylation of beta-catenin at the GSK-3 priming site Ser45 is not mediated by GSK-3 itself, but by an alternative kinase, indicating that beta-catenin is not an unprimed substrate for GSK-3 in vivo. Priming of GSK-3 dependent phosphorylation of beta-catenin by a different kinase could have important implications for the regulation of Wnt signalling.  相似文献   

9.
Glycogen synthase kinase-3 (GSK-3) is a serine-threonine kinase that is involved in multiple cellular signaling pathways, including the Wnt signaling cascade where it phosphorylates beta-catenin, thus targeting it for proteasome-mediated degradation. Unlike phosphorylation of glycogen synthase, phosphorylation of beta-catenin by GSK-3 does not require priming in vitro, i.e. it is not dependent on the presence of a phosphoserine, four residues C-terminal to the GSK-3 phosphorylation site. Recently, a means of dissecting GSK-3 activity toward primed and non-primed substrates has been made possible by identification of the R96A mutant of GSK-3beta. This mutant is unable to phosphorylate primed but can still phosphorylate unprimed substrates (Frame, S., Cohen, P., and Biondi R. M. (2001) Mol. Cell 7, 1321-1327). Here we have investigated whether phosphorylation of Ser(33), Ser(37), and Thr(41) in beta-catenin requires priming through prior phosphorylation at Ser(45) in intact cells. We have shown that the Arg(96) mutant does not induce beta-catenin degradation but instead stabilizes beta-catenin, indicating that it is unable to phosphorylate beta-catenin in intact cells. Furthermore, if Ser(45) in beta-catenin is mutated to Ala, beta-catenin is markedly stabilized, and phosphorylation of Ser(33), Ser(37), and Thr(41) in beta-catenin by wild type GSK-3beta is prevented in intact cells. In addition, we have shown that the L128A mutant, which is deficient in phosphorylating Axin in vitro, is still able to phosphorylate beta-catenin in intact cells although it has reduced activity. Mutation of Tyr(216) to Phe markedly reduces the ability of GSK-3beta to phosphorylate and down-regulate beta-catenin. In conclusion, we have found that the Arg(96) mutant has a dominant-negative effect on GSK-3beta-dependent phosphorylation of beta-catenin and that targeting of beta-catenin for degradation requires prior priming through phosphorylation of Ser(45).  相似文献   

10.
11.
beta-Catenin-mediated signaling can be constitutively activated by truncation or mutation of serine and threonine residues in exon 3. Mutations in this region are observed in many human tumors. Examination of the locations of these mutations reveals interesting patterns; specifically, Ser45 and Thr41 appear more frequently in malignant tumors, and Ser37 and Ser33 are more common in benign entities. To test whether these patterns represent functional differences in beta-catenin signaling mechanisms, we generated mutations of each of these residues. Stable transformation of Madin-Darby canine kidney cells showed a transformed phenotype with each of the four mutations, as assessed by growth in soft agar and collagen. Functional assays including proliferation assays, cell shedding assays, and wounding assays demonstrated two groups. Ser45 and Thr41 represent a more transformed phenotype, whereas Ser37 and Ser33 behaved similarly to the vector in these assays. Assessment of downstream genes demonstrated increased activation of the beta-catenin target gene cyclin D1 by Ser45. Finally, we examined the kinase activity of I kappa B kinase-alpha and found that this kinase, unlike glycogen synthase kinase-3 beta, appears to preferentially phosphorylate Ser45 and Thr41, independent of priming by casein kinase-1. We conclude that these sites may represent an alternative (non-wnt) signaling pathway, which may be inappropriately activated in tumors with mutations of these residues.  相似文献   

12.
13.
14.
Tau in Alzheimer disease brain is highly phosphorylated and aggregated into paired helical filaments comprising characteristic neurofibrillary tangles. Here we have analyzed insoluble Tau (PHF-tau) extracted from Alzheimer brain by mass spectrometry and identified 11 novel phosphorylation sites, 10 of which were assigned unambiguously to specific amino acid residues. This brings the number of directly identified sites in PHF-tau to 39, with an additional six sites indicated by reactivity with phosphospecific antibodies to Tau. We also identified five new phosphorylation sites in soluble Tau from control adult human brain, bringing the total number of reported sites to nine. To assess which kinases might be responsible for Tau phosphorylation, we used mass spectrometry to determine which sites were phosphorylated in vitro by several kinases. Casein kinase 1delta and glycogen synthase kinase-3beta were each found to phosphorylate numerous sites, and each kinase phosphorylated at least 15 sites that are also phosphorylated in PHF-tau from Alzheimer brain. A combination of casein kinase 1delta and glycogen synthase kinase-3beta activities could account for over three-quarters of the serine/threonine phosphorylation sites identified in PHF-tau, indicating that casein kinase 1delta may have a role, together with glycogen synthase kinase-3beta, in the pathogenesis of Alzheimer disease.  相似文献   

15.
16.
Mutations in the presenilin 1 (PS1) gene are the most common genetic factor underlying the development of early onset familial Alzheimer's disease (FAD). Accumulating evidence has shown that FAD-linked mutations of PS1 enhance the generation of amyloid-beta (1-42) protein. Recently, beta-catenin has been shown to interact with PS1. beta-catenin is essential for the Wnt signalling pathway. However, the biological significance of the interaction between beta-catenin and PS1 in this signalling pathway remains to be clarified. In this study, we investigated the effect of FAD-linked PS1 (M146L) mutation in the Wnt signalling pathway using the conditioned medium containing Wnt-3A. The expression of mutated PS1 inhibited the Wnt-3A-induced accumulation of beta-catenin. Chase analysis of beta-catenin in Wnt-3A-stimulated cells following cycloheximide treatment revealed that PS1 mutation enhanced the generation of the higher molecular mass form of beta-catenin, most likely, ubiquitinated beta-catenin. In addition, the expression of mutated PS1 elevated the level of phosphorylated beta-catenin, which is targeted to the ubiquitin/proteasome pathway. Thus, it appears that PS1 (M146L) mutation down-regulates the Wnt-3A-induced accumulation of beta-catenin due to an increase in the level of phosphorylated beta-catenin.  相似文献   

17.
The tumor suppressor adenomatous polyposis coli (APC) is mutated in familial adenomatous polyposis and in sporadic colorectal tumors. APC forms a complex with beta-catenin, Axin, and glycogen synthase kinase-3beta and induces the degradation of beta-catenin. In the present study, we examined whether APC association with Axin is required for degradation of beta-catenin. We found that a fragment of APC that induces beta-catenin degradation was rendered inactive by disruption of its Axin-binding sites. Also, overexpression of an Axin fragment spanning the regulator of the G-protein signaling domain inhibited APC-mediated beta-catenin degradation. An APC fragment with mutated beta-catenin-binding sites but intact Axin-binding sites also failed to induce degradation of beta-catenin. These results suggest that APC requires interaction with Axin and beta-catenin to down-regulate beta-catenin.  相似文献   

18.
Protein kinase B and glycogen synthase kinase-3 have been identified as susceptibility genes for schizophrenia and altered protein and mRNA levels have been detected in the brains of schizophrenics post-mortem. Recently, we reported that haloperidol, clozapine and risperidone alter glycogen synthase kinase-3 and beta-catenin protein expression and glycogen synthase kinase-3 phosphorylation levels in the rat prefrontal cortex and striatum. In the current study, beta-catenin, adenomatous polyposis coli, Wnt1, dishevelled and glycogen synthase kinase-3 were examined in the ventral midbrain and hippocampus using western blotting. In addition, beta-catenin and GSK-3 were examined in the substantia nigra and ventral tegmental area using confocal and fluorescence microscopy. The results indicate that repeated antipsychotic administration results in significant elevations in glycogen synthase kinase-3, beta-catenin and dishevelled-3 protein levels in the ventral midbrain and hippocampus. Raclopride causes similar changes in beta-catenin and GSK-3 in the ventral midbrain, suggesting that D2 dopamine receptor antagonism mediated the changes observed following antipsychotic administration. In contrast, amphetamine, a drug capable of inducing psychotic episodes, had the opposite effect on beta-catenin and GSK-3 in the ventral midbrain. Collectively, the results suggest that antipsychotics may exert their beneficial effects through modifications to proteins that are associated with the canonical Wnt pathway.  相似文献   

19.
20.
Lysyl oxidase (LOX) down-regulation induced an oncogenic phenotype in NRK-49F. This event was accompanied by a constitutive activation of ras oncogene and down-regulation of PDGF beta receptor, among other important phenotypic and molecular modifications. In the present paper we show that ras activation is not accompanied by a constitutive activation of the MAP kinases as expected. Surprisingly, even if MAPK-independent, ras activation was accompanied by a constitutive Ser(63) and Ser(73) phosphorylation of c-jun, a further downstream target of ras. Although rare, this ras alternative pathway has been described. Since ras alone is seldom able to trigger cell transformation and the transformed phenotype showed clearly an abnormal adhesion pattern, we investigated the main molecules involved in cell-cell adhesion. In fact, we found that beta-catenin was up-regulated, escaping the glycogen synthase kinase-3 beta (GSK-3 beta) control, through unclear mechanisms. Its nuclear accumulation was accompanied by an up-regulation of cyclin D1, as classically described in the activation of the Wnt/beta-catenin signal pathway. We believe that the resulting up-regulation of cyclin D1 acted in synergy with ras to induce the cell transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号