首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that both bradykinin and lysylbradykinin are generated in nasal secretions upon nasal challenge of allergic individuals with appropriate allergen and have suggested that these potent pro-inflammatory peptides may contribute to the pathogenesis of the allergic response. In this study we used a variety of synthetic substrates together with both thin layer and high performance liquid chromatography systems to examine the metabolism of these peptides in nasal secretions obtained by lavage. We now demonstrate that in addition to low levels of angiotensin-converting enzyme, nasal lavages contain an aminopeptidase activity that converts lysylbradykinin to bradykinin, and a carboxypeptidase that removes the C-terminal arginine from bradykinin and lysylbradykinin. The levels of all these activities are significantly increased after allergen challenge of allergic, but not nonallergic, individuals. The aminopeptidase and carboxypeptidase activities present in post-challenge lavages from allergic individuals convert lysylbradykinin to intermediate products (bradykinin and des (Arg10) lysylbradykinin) and eventually to des (Arg9) bradykinin. The nasal carboxypeptidase was activated 475% by 0.1 mM CoCl2 and was inhibited by the carboxypeptidase N inhibitor, MERGETPA (D-L-mercaptomethyl-3-guanidino-ethylthiopropanoic acid) (IC50 = 10 microM). The aminopeptidase activity was not affected by MERGETPA but was potently inhibited by amastatin and bestatin (IC50 = 0.05 microM and 3.0 microM, respectively). The activity of the aminopeptidase against its synthetic substrate was also inhibited by lysylbradykinin (IC50 = 50 microM). Both the carboxypeptidase and aminopeptidase activities had neutral pH optima and were inhibited by o-phenanthroline, but were unaffected by inhibitors of neutral endopeptidases (phosphoramidon) or angiotensin-converting enzyme (Captopril). The Km of bradykinin for the nasal carboxypeptidase was 139 +/- 14 microM (n = 3). We conclude that during the allergic response, nasal secretions contain aminopeptidase and carboxypeptidase activities that convert lysylbradykinin and bradykinin (B2 agonists) to des (Arg9) bradykinin (a B1 agonist). Because the nature of the kinin receptors in the nasal mucosa are currently unknown, it remains to be determined whether this metabolism results in the termination of biologic activity or the production of a biologically active moiety.  相似文献   

2.
We have shown recently that kinins are generated during experimentally induced allergic rhinitis in man, and have demonstrated that substrates for kinin-forming enzymes are provided during the allergic response by a transudation of kininogens from plasma into nasal secretions. In light of this increased vascular permeability during the allergic reaction, we have extended our studies on the mechanisms of kinin formation to examine the potential involvement of plasma kallikrein. Allergic individuals (n = 7) and nonallergic controls (n = 7) were challenged intranasally with an allergen, and nasal lavages, obtained before and after challenge, were assayed for immunoreactive human plasma kallikrein/prekallikrein (iHPK). Post-challenge iHPK values were significantly elevated (p less than 0.01) in the allergic group (353 +/- 394 ng/ml; x +/- SD) as compared to the nonallergics (19 +/- 22 ng/ml), and correlated with increases in kinins, histamine, and N-alpha-tosyl-L-arginine methyl esterase (TAME-esterase) activity and with the onset of clinical symptoms. Gel filtration studies revealed that plasma prekallikrein is activated during the allergic response and contributes to kinin formation prior to interaction with plasma protease inhibitors. We also show that the majority of the TAME-esterase activity detected in nasal secretions during the allergic response is due to activities consistent with a plasma kallikrein/alpha 2-macroglobulin complex and with mast cell tryptase.  相似文献   

3.
We investigated whether hyperosmolar saline (HS), applied via paper disk onto the septum of one nostril, induces a nasal secretory response. Furthermore, we examined whether this response is accentuated in patients with active allergic rhinitis (AR) compared with healthy volunteers. Unilateral HS produced significant nasal secretions both ipsilateral and contralateral to the site of challenge in the AR group and only ipsilaterally in the healthy group. The HS-induced nasal secretions were significantly greater in the AR vs. the healthy subjects. In a separate study, we ascertained that the nasal response to HS is neurally mediated and found that ipsilateral nerve blockade with lidocaine significantly attenuates the HS-induced secretions bilaterally. In another group of AR subjects, we determined whether nociceptive fibers were involved in this response and found that sensory nerve desensitization with repeated application of capsaicin attenuated the HS-induced nasal secretions. Finally, we determined whether the secretory hyperresponsiveness in AR is attributable to increased reactivity of submucosal glands rather than of nerves. We found that the dose response to methacholine, which directly stimulates the glands, was identical among AR and healthy subjects. We conclude that, in AR, nasal challenge with HS induces significantly greater reflex secretions involving capsaicin-sensitive nerve fibers, consistent with the notion of neural hyperresponsiveness in this disease.  相似文献   

4.
Protaglandin (PG) was extracted was extracted from nasal secretions of individuals with hay fever and from nasal washings of normal subjects. The extract was chromatographed in a silicic acid column and the purified PGE fraction was converted to PGB by alkaline dehydration. The PGB was then measured by a competitive radioimmunoassay with tritiated PGB 1 and anti-PGB1 antibody, employing the double antibody technique. PGE was detected in the secretions of 6 of 12 hay fever patients and in the pooled normal nasal washings.  相似文献   

5.
Allergic rhinitis (AR) can cause significant olfactory loss, but few studies have specifically investigated AR effects on olfactory and nasal respiratory tissues per se. To address this, we used a murine AR protocol employing nasal allergen infusion for both sensitization and challenges. Seven- to 11-week BALB/c mice were bilaterally infused with 1% ovalbumin (OVA) in phosphate-buffered saline (PBS) or PBS alone for 6 or 11 weeks, given single bilateral PBS or OVA infusions 24 h before sacrifice, or left untreated. High OVA-specific IgE serum levels and eosinophil infiltration confirmed AR induction. Olfactory (OE) and respiratory (RE) epithelia showed distinctly different responses, most conspicuously, massive eosinophil infiltration of immediately RE-subjacent lamina propria. In OE, such infiltration was minimal. Significant RE hypertrophy and hyperplasia also occurred, although OE organization was generally maintained and extensive disruption localized despite a 20% reduction in sensory neurons and globose basal cells after 11 weeks OVA. Pronounced Bowman's gland hypertrophy crowded both OE and olfactory nerve bundles. Cellular proliferation was widely distributed in RE but in OE was localized to normally thinner OE and RE-proximal OE, suggesting possible indirect RE influences. Terminal deoxynucleotide transferase (TdT) nick end labeling was greater in OE than RE and, in contrast to other effects, occurred with acute infusions and chronic PBS alone, often unilaterally. Following chronic OVA, AR-related bilateral increases appeared superimposed on those. These findings indicate AR effects on olfactory function may be complex, reflecting various levels of RE/OE responses and interactions.  相似文献   

6.
A comparative proteomic approach was applied to examine nasal lavage fluid (NLF) from patients with seasonal allergic rhinitis (SAR, n = 6) and healthy subjects (controls, n = 5). NLF samples were taken both before allergy (pollen) season and during season, and proteins were analyzed by two-dimensional gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) after tryptic cleavage. Twenty proteins were selected and quantified. During allergy season, the levels of six sialylated isoforms of PLUNC (palate lung nasal epithelial clone) were lower in SAR patients than controls, as were the levels of six isoforms of von Ebner's gland protein (VEGP), including a previously undescribed form with N-linked glycosylation, and of cystatin S. PLUNC is a new innate immunity protein and VEGP and cystatin S are two endogenous proteinase inhibitors. By contrast, the levels of an acidic form of alpha-1-antitrypsin were higher in SAR patients than controls. One previously unidentified NLF protein was found in all samples from the SAR patients during allergy season but not in any sample before allergy season: this protein was identified as eosinophil lysophospholipase (Charcot-Leyden crystal protein/galactin 10). MS/MS analysis of the N-terminus of the protein showed removal of Met and acetylation of Ser. Altogether, these findings illustrate the potential use of proteomics for identifying protein changes associated with allergic rhinitis and for revealing post-translational modifications of such new potential markers of allergic inflammation.  相似文献   

7.
Sanico, Alvin M., Satsuki Atsuta, David Proud, and AlkisTogias. Plasma extravasation through neuronal stimulation in humannasal mucosa in the setting of allergic rhinitis. J. Appl. Physiol. 84(2): 537-543, 1998.We havepreviously shown that capsaicin nasal challenge in subjects withallergic rhinitis produces a dose-dependent increase in the albumincontent of nasal lavage fluids. In the present set of studies, wedetermined whether this observation represents plasma extravasationthat is neuronally mediated. To evaluate whether glandular secretionscontribute to the albumin increase in nasal lavage fluids, volunteerswith allergic rhinitis were pretreated with atropine or placebo before capsaicin challenge. Atropine significantly reduced the volume ofreturned lavage fluids and their lysozyme content but increased theiralbumin and fibrinogen content. To assess the contribution of sensorynerve stimulation, subjects with allergic rhinitis were pretreated in asecond study with lidocaine or placebo before capsaicin challenge.Lidocaine significantly attenuated the capsaicin-induced increases inthe volume of nasal lavage fluids, as well as their lysozyme andalbumin content. To rule out the possibility of a direct effect oflidocaine on blood vessels rather than on nerves, healthy subjects werepretreated in a third study with lidocaine or placebo before bradykininnasal challenge. Lidocaine did not affect the bradykinin-inducedincrease in the albumin content of nasal fluids. We conclude that, inallergic rhinitis, high-dose capsaicin induces plasma extravasation inthe human nose and that this effect is neuronally mediated. Thisprovides more definitive evidence that neurogenic inflammation canoccur in vivo in the human upper airway.

  相似文献   

8.
Canine model of nasal congestion and allergic rhinitis.   总被引:1,自引:0,他引:1  
The ragweed- and histamine-induced decreases in nasal patency in cohorts of ragweed-sensitized and nonsensitized dogs were assessed. The volume of nasal airways (V(NA)) was assessed by acoustic rhinometry and resistance to airflow (R(NA)) by anterior rhinomanometry. Histamine delivered to the nasal passages of five dogs caused a rapid and prolonged increase in R(NA) (0.75 +/- 0.26 to 3.56 +/- 0.50 cmH(2)O. l(-1). min), an effect that was reversed by intranasal delivery of aerosolized phenylephrine. Ragweed challenge in five ragweed-sensitized dogs increased R(NA) from 0.16 +/- 0.02 to 0.53 +/- 0.07 cmH(2)O. l(-1). min and decreased V(NA) from 12.5 +/- 1.9 to 3.9 +/- 0.3 cm(3), whereas administration of saline aerosol neither increased R(NA) nor decreased V(NA). Prior administration of d-pseudoephedrine (30 mg po) attenuated the ragweed-induced increase in R(NA) and decrease in V(NA). Ragweed challenge changed neither R(NA) nor V(NA) in four nonsensitized dogs. Mediator-induced nasal congestion and allergen-induced allergic rhinitis in ragweed-sensitized dogs, which exhibit symptoms similar to human disease, can be used in the evaluation of safety and efficacy of antiallergic activity of potential drugs.  相似文献   

9.
Kallikreins are involved in the posttranslational processing of a number of specific polypeptide precursors. Previously, human glandular kallikrein (hGK-1) mRNA has been identified in the prostate; however, the hGK-1 protein has not been identified and characterized. Therefore, its physiologic function in the prostate is not known. In this study, we have isolated a full-length hGK-1 cDNA from a human adenocarcinoma cell line, LNCaP. In vitro translation experiments demonstrated that the molecular size of the hGK-1 protein generated from this cDNA is similar to that of prostate-specific antigen (PSA), a protein which is produced exclusively in the prostate. In situ hybridization with a hGK-1-specific oligonucleotide probe (77 bases), which can differentiate hGK-1 mRNA from PSA mRNA, demonstrated the hGK-1 mRNA to be located in the prostate epithelium. The hGK-1 mRNA was colocalized with PSA mRNA in prostatic epithelia. Moreover, in situ hybridization studies revealed that the level of hGK-1 mRNA in human benign prostatic hyperplasia tissues is approximately half that of PSA mRNA. Furthermore, we have demonstrated that hGK-1 mRNA is under androgenic regulation in LNCaP cells. Time course analysis revealed that hGK-1 mRNA levels increased significantly at 5 h of mibolerone treatment and reached maximal levels by 9 h. In addition, hGK-1 mRNA levels were increased by dihydrotestosterone, but not by dexamethasone or diethylstilbestrol treatments. Flutamide, a nonmetabolized anti-androgen, repressed the androgenic effects. These studies suggest that expression of hGK-1 mRNA is regulated by androgen via the androgen receptor.  相似文献   

10.
Fujikura T  Okubo K 《Peptides》2011,32(2):368-373
Adrenomedullin (AM) is a potent hypotensive and vasodilatory peptide. AM may exert protective actions against the development of many diseases by modulating the blood circulation and body fluid balance. In addition to these functions, it has recently been reported to play important roles in the development of allergy and infections. The purpose of the present study was to demonstrate the existence of AM in the human nasal mucosa and to discuss whether AM might contribute to the pathogenesis of nasal congestion. We measured the total AM concentrations in the nasal discharge. The total AM concentration in the nasal discharge was significantly higher in the non-allergy group (72.1 ± 55.5 fmol/ml) than in the allergy group (37.1 ± 44.2 fmol/ml). By immunohistochemical examination, we identified AM-containing cells in the nasal mucosa from both subjects with and without nasal allergy, and also in nasal polyps. Moreover, those cells were positive for anti-tryptase antibody which recognizes mast cells. In nasal allergy, vasodilatation and increase in vascular permeability are characteristic features of the immediate phase response. Reduced AM levels in the nasal discharge may be associated with attenuation of both of these factors. On the other hand, immunohistochemical analysis demonstrated AM-immunoreactive cells in the chronic phase of rhinosinusitis. In the late and inflammatory phase, mast cells produce AM, which possibly acts as an inhibitor of inflammatory cell migration. In conclusion, AM may be actively secreted into the nasal discharge. AM in the nasal discharge may have protective and anti-inflammatory effects in the nasal mucosa.  相似文献   

11.
12.
The microbiological study of 69 patients with allergic annual rhinitis (AAR) and infectious rhinitis (IR) was carried out. In AAR the isolated representatives of 15 genera and 40 species were distributed in 2 to 7 component; in IR the isolated representatives of 16 genera and 25 species were grouped in 2 to 4-component associations. In AAR Staphylococcus aureus was found to belong to the main species and in IR, S. aureus and S. epidermidis, while the number of species regarded as occasional in AAR was 7 (S. auricularis, S. cohnii, S. hominis, S. haemolyticus, S. warneri, S. apitis, S. schleiferi). Differences in the distribution of Neisseria, nonfermenting Gram negative bacteria, Streptococcus in associations in cases of AAR and IR were established. In AAR Corynebacterium pseudodiphthericum and in IR C. pseudotuberculosis were the dominant species.  相似文献   

13.
Fab fragments from two new monospecific anti-human tissue kallikrein sera were examined for their capacity to inhibit the functional activities of purified human urinary kallikrein and purified human pancreatic kallikrein. Fragments from a new anti-urinary kallikrein serum and from an anti-pancreatic kallikrein serum yielded mixed inhibition of kinin-generating activity and minimal inhibition of esterolytic activity. In contrast to the previously described "active site directed" anti-urinary kallikrein, these new antisera demonstrated little specificity for epitopes near the enzymatic site of urinary or pancreatic kallikrein. When used to localize kallikrein antigen in human pancreas obtained at surgery, IgG fractions of the new anti-kallikrein sera yielded moderate acinar and ductal staining in the absence of pretreatment of the tissue with trypsin or pronase. Short incubation with 0.125 mg/ml of either enzyme permitted the discrete localization of islet beta cell kallikrein antigen, while increased pronase concentrations decreased kallikrein antigen in both islets and exocrine tissue and led to islet destruction. Both antibody specificity and tissue preparation influence kallikrein localization in human pancreas.  相似文献   

14.
The gene for the human glandular kallikrein, prostate-specific antigen, has been cloned. The sequence of 7130 nucleotides encompassing the gene and 633 bp of 5' and 639 bp of 3' flanking DNA has been determined. The translation initiation site was slightly heterogeneous, yielding 5' non-translated leader sequences of 41 and 35 bp. The gene is divided into five exons, with introns located at positions identical with those found in other glandular kallikrein genes. The nucleotide sequence is very similar to that of the human kallikrein gene hGK-1, with 76 to 93% of the nucleotides being identical in the exons and 76 to 87% in the introns. The similarity also extends approximately 200 bp into the sequence flanking the 5' end of hGK-1 and several other, both human and rodent, glandular kallikrein genes.  相似文献   

15.
The purpose of this study is to examine the "in vivo" release of 15-HETE and other arachidonic acid metabolites in nasal secretions following a challenge with "Dermatophagoides Pteronyssinus" in patients with allergic rhinitis and non-allergic controls. In addition, we examine the effects of a membrane stabilizer, such as sodium cromoglycate, on these metabolites. Thirteen allergic subjects and seven healthy controls are studied. 15-HETE, peptide leukotrienes, LTB4, PGD2, PGE2 and PGF2 alpha levels are evaluated before and after nasal challenge in sodium cromoglycate treated and untreated subjects. This study provides "in vivo" evidence that the pathophysiological responses to nasal antigen challenge could be related to the release of 15-HETE as well as other arachidonic acid metabolites, mainly arising from the lipoxygenase pathway.  相似文献   

16.
17.
The purpose of our study was to establish a new model of allergic rhinitis in mice, eliciting symptoms such as sneezing, infiltration of eosinophils into the nasal mucosa, and antigen-specific IgE production. One of the major human T-cell epitopes in Cry j 1, an allergen of Japanese cedar pollen, is also a major murine T-cell epitope in B10.S mice. Thus we tried to establish an allergic rhinitis model in B10.S mice with Cry j 1 as the antigen. We sensitized B10.S mice subcutaneously with Cry j 1/alum three times at intervals of 1 week. Five weeks after the final sensitization, we challenged the mice by instilling Cry j 1 intranasally from the day after intranasal histamine pretreatment. Soon after, we counted the number of sneezes. We then evaluated the infiltration of eosinophils into the nasal tissues and also measured the serum levels of antigen-specific IgE antibody. In addition, we confirmed the effects of ketotifen fumarate and dexamethasone hydrochloride on these animals. In Cry j 1-sensitized B10.S mice, sneezes, eosinophil peroxidase (EPO) activity in nasal tissues, and Cry j 1-specific IgE clearly increased after intranasal histamine pretreatment and 5 days of continuous intranasal Cry j 1 challenge. Both ketotifen and dexamethasone inhibited the increase in sneezing, and dexamethasone also inhibited EPO activity and Cry j 1-specific IgE. Thus we succeeded in establishing a new model of allergic rhinitis in Cry j 1-sensitized B10.S mice, which exhibited sneezing, eosinophil infiltration into the nasal mucosa, and Cry j 1-specific IgE production.  相似文献   

18.
19.

Background

Clara cell protein (CC16) is ascribed a protective and anti-inflammatory role in airway inflammation. Lower levels have been observed in asthmatic subjects as well as in subjects with intermittent allergic rhinitis than in healthy controls. Nasal nitric oxide (nNO) is present in high concentrations in the upper airways, and considered a biomarker with beneficial effects, due to inhibition of bacteria and viruses along with stimulation of ciliary motility. The aim of this study was to evaluate the presumed anti-inflammatory effects of nasal CC16 and nNO in subjects with allergic rhinitis.

Methods

The levels of CC16 in nasal lavage fluids, achieved from subjects with persistent allergic rhinitis (n = 13), intermittent allergic rhinitis in an allergen free interval (n = 5) and healthy controls (n = 7), were analyzed by Western blot. The levels of nNO were measured by the subtraction method using NIOX?. The occurrences of effector cells in allergic inflammation, i.e. metachromatic cells (MC, mast cells and basophiles) and eosinophils (Eos) were analyzed by light microscopy in samples achieved by nasal brushing.

Results

The levels of CC16 correlated with nNO levels (r2 = 0.37; p = 0.02) in allergic subjects. The levels of both biomarkers showed inverse relationships with MC occurrence, as higher levels of CC16 (p = 0.03) and nNO (p = 0.05) were found in allergic subjects with no demonstrable MC compared to the levels in subjects with demonstrable MC. Similar relationships, but not reaching significance, were observed between the CC16 and nNO levels and Eos occurrence. The levels of CC16 and nNO did not differ between the allergic and the control groups.

Conclusions

The correlation between nasal CC16 and nNO levels in patients with allergic rhinitis, along with an inverse relationship between their levels and the occurrences of MC in allergic inflammation, may indicate that both biomarkers have anti-inflammatory effects by suppression of cell recruitment. The mechanisms behind these observations warrant further analyses.  相似文献   

20.
Overall quantity of microorganisms and their relative prevalence on nasal mucous membrane in patients with allergic rhinosinusitis are determined. Microbial flora in studied group was characterized qualitatively and quantitatively. Obtained results showed that there were changes of microbiocenosis of nasal mucous membrane during allergic rhinosinusitis and in characteristics of species in Staphylococcus genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号