共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Dr. Annelise Fiil 《Cell and tissue research》1976,167(1):23-35
Summary Oogenesis has been followed with the electron microscope in 2 strains of the malaria mosquito Anopheles gambiae, from the emergence of the adult (oocytes at leptonema) till shortly before the oocytes are ready for oviposition. After pachynema the chromosomes form a karyosphere and a fibrous capsule develops around it. Work on other mosquitoes suggests that the capsule may be related to the synaptonemal complexes. Both Anopheles strains contain at some time an extrachromosomal (not DNA-containing) body comparable to the karyosphere in size. Clusters of granules are present at the surface of the nucleolus and free in the nucleoplasm. Tentative results indicate that they may contain DNA. During oogenesis the nucleolus becomes very large, mainly because of proliferation of the nucleolonema. Towards the end of oocyte development the nucleus assumes the large canoe-shape also seen in Aedes and Culex. Nucleolonema traverse the entire nucleus, and modified granular clusters are found throughout. 相似文献
3.
4.
5.
The circadian control of adult emergence was studied in Anopheles gambiae. In contrast to the situation reported for other mosquitoes, the timing of adult eclosion can be modified by the light regime. Comparison of the timing of pupal—adult ecdysis in groups of individuals pupating at the same time and then kept either in 12 h light alternating with 12 h dark (LD 12:12) or constant light, at temperatures from 22 to 34·5°C, showed that the timing can be modified by the light regime. In LD, eclosion due to take place during the middle and later part of the light phase was delayed, giving a peak near light-off; the maximum delay was of the order of 4–5 h at both 22 and 34·5°C. This effect appears to be mediated by a temperature-compensated timing mechanism. Experiments with different light regimes indicated that the time cue is a previous change from light to dark. When this was given to late fourth stage larvae it affected the timing of adult eclosion without affecting the time of pupation. 相似文献
6.
The Hox genes play a central role in regulating development and are involved in the specification of cell fates along the anteroposterior axis. In insects and vertebrates, these genes are clustered and organized in an arrangement that is largely conserved across evolutionary lineages. By exploiting the sequence conservation of the homeobox, orthologues of the Hox genes Sex combs reduced (Scr), fushi tarazu (ftz), Antennapedia (Antp), Ultrabithorax (Ubx), and abdominal-A (abd-A) have been isolated from the malaria vector mosquito, Anopheles gambiae. These genes were first identified in Drosophila, where they achieve a high level of functional complexity, in part, by the use of alternative promoters, polyadenylation sites, and splicing to generate different protein isoforms. Preliminary analyses of the Anopheles Hox genes suggest that they do not achieve their functional complexity in the same manner. Using a combination of in situ hybridization to polytene chromosomes and chromosome walking, the Anopheles Hox genes have been localized to a single cluster in the region 19D-E on chromosome 2R, a situation distinct from that of Drosophila where the Hox complex is split into two clusters. This study, therefore, provides a framework for future comparative analyses of the structure, organization, and expression of developmental regulatory genes between the lower and higher Diptera. Moreover, the genes that have been isolated enhance the genetic and physical maps of chromosome 2R in this medically important mosquito species. 相似文献
7.
8.
9.
Holger Bauer Stephan Gromer Andrea Urbani Martina Schn?lzer R Heiner Schirmer Hans-Michael Müller 《European journal of biochemistry》2003,270(21):4272-4281
The mosquito, Anopheles gambiae, is an important vector of Plasmodium falciparum malaria. Full genome analysis revealed that, as in Drosophila melanogaster, the enzyme glutathione reductase is absent in A. gambiae and functionally substituted by the thioredoxin system. The key enzyme of this system is thioredoxin reductase-1, a homodimeric FAD-containing protein of 55.3 kDa per subunit, which catalyses the reaction NADPH + H+ + thioredoxin disulfide-->NADP+ + thioredoxin dithiol. The A. gambiae trxr gene is located on chromosome X as a single copy; it represents three splice variants coding for two cytosolic and one mitochondrial variant. The predominant isoform, A. gambiae thioredoxin reductase-1, was recombinantly expressed in Escherichia coli and functionally compared with the wild-type enzyme isolated in a final yield of 1.4 U.ml(-1) of packed insect cells. In redox titrations, the substrate A. gambiae thioredoxin-1 (Km=8.5 microm, kcat=15.4 s(-1) at pH 7.4 and 25 degrees C) was unable to oxidize NADPH-reduced A. gambiae thioredoxin reductase-1 to the fully oxidized state. This indicates that, in contrast to other disulfide reductases, A. gambiae thioredoxin reductase-1 oscillates during catalysis between the four-electron reduced state and a two-electron reduced state. The thioredoxin reductases of the malaria system were compared. A. gambiae thioredoxin reductase-1 shares 52% and 45% sequence identity with its orthologues from humans and P. falciparum, respectively. A major difference among the three enzymes is the structure of the C-terminal redox centre, reflected in the varying resistance of catalytic intermediates to autoxidation. The relevant sequences of this centre are Thr-Cys-Cys-SerOH in A. gambiae thioredoxin reductase, Gly-Cys-selenocysteine-GlyOH in human thioredoxin reductase, and Cys-X-X-X-X-Cys-GlyOH in the P. falciparum enzyme. These differences offer an interesting approach to the design of species-specific inhibitors. Notably, A. gambiae thioredoxin reductase-1 is not a selenoenzyme but instead contains a highly unusual redox-active Cys-Cys sequence. 相似文献
10.
N J Besansky 《Molecular and cellular biology》1990,10(3):863-871
11.
The Mosaic (Mos) mutation, isolated in the F1 of 60Co-irradiated mosquitoes, confers variegated eye color to third and fourth instar larvae, pupae, and adults of the mosquito Anopheles gambiae. Mos is recessive in wild pink eye (p+) individuals, but is dominant and confers areas of wild-type pigment in mutant pink eye backgrounds. Mos is located 14.4 cM from pink eye on the X chromosome and is associated with a duplication of division 2B euchromatin that has been inserted into division 6 heterochromatin. Various combinations of Mos, pink eye alleles, and the autosomal mutation red eye were produced. In all cases, the darker pigmented regions of the eye in Mos individuals show the phenotypic interactions expected if the phenotype of those regions is due to expression of a p+ allele. Expression of Mos is suppressed by rearing larvae at 32 degrees C relative to 22 degrees C. All of these characteristics are consistent with Mos being a duplicated wild copy of the pink eye gene undergoing position-effect variegation. 相似文献
12.
Adult Anopheles gambiae Giles mosquitoes from Zanzibar were tested on a standard discriminating dose of DDT which reliably kills susceptible mosquitoes. Adults from wild-caught larvae reared in the laboratory, and from the F1 progeny of wild-caught adults, showed less than 5% test mortality when newly-emerged, but mortality rose with age to over 90% when they were 12-14 days old. Wild-caught mixed-age adults showed an intermediate mortality rate of 25%, close to the rate predicted from laboratory results for a fully resistant population with an age-structure typical of this species in natural conditions. It is inferred that older, genetically resistant insects may be scored as susceptible, so that routine susceptibility tests with wild-caught adults underestimate the frequency of resistance. In Zanzibar, such tests probably helped to persuade spraying authorities to continue spraying DDT in spite of resistance. Resistance which is restricted to younger insects may nonetheless reduce the effectiveness of spraying. 相似文献
13.
14.
In mosquito larvae, the peritrophic matrix (PM) separates the gut contents from the intestinal epithelium. This report describes a new in vivo assay for estimating PM permeability. The assay also allows for assessment of the permeability of the caecal membrane, a structure that separates each caecum from the gut lumen. Permeability was estimated by the appearance of fluorescently-labeled dextrans (size range 4,400 to 2 million Da) within the gastric caecae of mosquito larvae. While the intact peritrophic matrix was impermeable to 2 million Da dextran particles, it was permeable to dextran particles of 148 kDa and smaller. The caecal membrane appears to have considerably smaller pores, being permeable only to dextrans of 19.5 kDa and smaller. The assay was also used to devise a treatment that disrupts the PM sufficiently to allow the passage of virus-sized particles. Dithiothreitol and to a lesser extent, chitinase were effective in disrupting the PM. Cycloheximide had a small effect; Polyoxin D, Pronase and calcofluor did not alter the permeability to 2 million Da dextran particles. Disruption of the PM is discussed in the context of infecting mosquitoes with retroviral transformation vectors. 相似文献
15.
16.
Chromosome end elongation by recombination in the mosquito Anopheles gambiae. 总被引:1,自引:0,他引:1 下载免费PDF全文
One of the functions of telomeres is to counteract the terminal nucleotide loss associated with DNA replication. While the vast majority of eukaryotic organisms maintain their chromosome ends via telomerase, an enzyme system that generates short, tandem repeats on the ends of chromosomes, other mechanisms such as the transposition of retrotransposons or recombination can also be used in some species. Chromosome end regression and extension were studied in a medically important mosquito, the malaria vector Anopheles gambiae, to determine how this dipteran insect maintains its chromosome ends. The insertion of a transgenic pUChsneo plasmid at the left end of chromosome 2 provided a unique marker for measuring the dynamics of the 2L telomere over a period of about 3 years. The terminal length was relatively uniform in the 1993 population with the chromosomes ending within the white gene sequence of the inserted transgene. Cloned terminal chromosome fragments did not end in short repeat sequences that could have been synthesized by telomerase. By late 1995, the chromosome ends had become heterogeneous: some had further shortened while other chromosomes had been elongated by regenerating part of the integrated pUChsneo plasmid. A model is presented for extension of the 2L chromosome by recombination between homologous 2L chromosome ends by using the partial plasmid duplication generated during its original integration. It is postulated that this mechanism is also important in wild-type telomere elongation. 相似文献
17.
ABSTRACT. Swarming behaviour in the Anopheles gambiae complex was observed in the field, in the Gambia, West Africa, and in the laboratory. Naturally occurring swarms of A.melas were seen in a clearing at the edge of mangrove swamps close to their breeding sites. Males could be induced to swarm over artificial 'markers' within this 'arena' but not outside it. Females were observed entering the swarm and mating. In the laboratory, in an artificial 'dusk', male A.gambiae s.str. swarmed over a black marker on the floor of their 1.2-m cube cage. In contrast to the males, females made only short flights over the marker, performing brief turning movements at its edge. It is proposed that swarming brings about the aggregation necessary before short-range attraction can take place, and that, in nature, anopheline mosquitoes orientate visually first to an arena and then to a marker within the arena. Female behaviour can be interpreted as a process of scanning possible swarm sites until mating is achieved. 相似文献
18.
Goltsev Y Fuse N Frasch M Zinzen RP Lanzaro G Levine M 《Development (Cambridge, England)》2007,134(13):2415-2424
The dorsal-ventral patterning of the Drosophila embryo is controlled by a well-defined gene regulation network. We wish to understand how changes in this network produce evolutionary diversity in insect gastrulation. The present study focuses on the dorsal ectoderm in two highly divergent dipterans, the fruitfly Drosophila melanogaster and the mosquito Anopheles gambiae. In D. melanogaster, the dorsal midline of the dorsal ectoderm forms a single extra-embryonic membrane, the amnioserosa. In A. gambiae, an expanded domain forms two distinct extra-embryonic tissues, the amnion and serosa. The analysis of approximately 20 different dorsal-ventral patterning genes suggests that the initial specification of the mesoderm and ventral neurogenic ectoderm is highly conserved in flies and mosquitoes. By contrast, there are numerous differences in the expression profiles of genes active in the dorsal ectoderm. Most notably, the subdivision of the extra-embryonic domain into separate amnion and serosa lineages in A. gambiae correlates with novel patterns of gene expression for several segmentation repressors. Moreover, the expanded amnion and serosa anlage correlates with a broader domain of Dpp signaling as compared with the D. melanogaster embryo. Evidence is presented that this expanded signaling is due to altered expression of the sog gene. 相似文献
19.
David A. Ellis George Avraam Astrid Hoermann Claudia A. S. Wyer Yi Xin Ong George K. Christophides Nikolai Windbichler 《PLoS genetics》2022,18(6)
Gene drives for mosquito population modification are novel tools for malaria control. Strategies to safely test antimalarial effectors in the field are required. Here, we modified the Anopheles gambiae zpg locus to host a CRISPR/Cas9 integral gene drive allele (zpgD) and characterized its behaviour and resistance profile. We found that zpgD dominantly sterilizes females but can induce efficient drive at other loci when it itself encounters resistance. We combined zpgD with multiple previously characterized non-autonomous payload drives and found that, as zpgD self-eliminates, it leads to conversion of mosquito cage populations at these loci. Our results demonstrate how self-eliminating drivers could allow safe testing of non-autonomous effector-traits by local population modification. They also suggest that after engendering resistance, gene drives intended for population suppression could nevertheless serve to propagate subsequently released non-autonomous payload genes, allowing modification of vector populations initially targeted for suppression. 相似文献
20.
P. O. MIREJI J. KEATING A. HASSANALI C. M. MBOGO M. N. MUTURI J. I. GITHURE J. C. BEIER 《Medical and veterinary entomology》2010,24(2):101-107
The global rate of heavy metal pollution is rapidly increasing in various habitats. Anopheles malaria vector species (Diptera: Culicidae) appear to tolerate many aquatic habitats with metal pollutants, despite their normal proclivity for ‘clean’ water (i.e. low levels of organic matter). Investigations were conducted to establish whether there are biological costs for tolerance to heavy metals in Anopheles gambiae Giles sensu stricto and to assess the potential impact of heavy metal pollution on mosquito ecology. Anopheles gambiae s.s. were selected for cadmium, copper or lead tolerance through chronic exposure of immature stages to solutions of the metals for three successive generations. Biological costs were assessed in the fourth generation by horizontal life table analysis. Tolerance in larvae to cadmium (as cadmium chloride, CdCl2), copper [as copper II nitrate hydrate, Cu(NO3)2 2.5 H2O] and lead [as lead II nitrate, Pb(NO3)2], monitored by changes in LC50 concentrations of the metals, changed from 6.07 µg/L, 12.42 µg/L and 493.32 µg/L to 4.45 µg/L, 25.02 µg/L and 516.69 µg/L, respectively, after three generations of exposure. The metal‐selected strains had a significantly lower magnitude of egg viability, larval and pupal survivorship, adult emergence, fecundity and net reproductive rate than the control strain. The population doubling times were significantly longer and the instantaneous birth rates lower in most metal‐selected strains relative to the control strain. Our results suggest that although An. gambiae s.s. displays the potential to develop tolerance to heavy metals, particularly copper, this may occur at a significant biological cost, which can adversely affect its ecological fitness. 相似文献