首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The slow Ca2+ channels (L-type) of the heart are stimulated by cAMP. Elevation of cAMP produces a very rapid increase in number of slow channels available for voltage activation during excitation. The probability of a Ca2+ channel opening and the mean open time of the channel are increased. Therefore, any agent that increases the cAMP level of the myocardial cell will tend to potentiate ICa, Ca2+ influx, and contraction. The action of cAMP is mediated by PK-A and phosphorylation of the slow Ca2+ channel protein or an associated regulatory protein (stimulatory type). The myocardial slow Ca2+ channels are also rogulated by cGMP, in a manner that is opposite orantagonistic to that of cAMP. We have demonstrated this at both the macroscople level (whole-cell voltage clamp) and the single-channel level. The effect of cGMP is mediated by PK-G and phosphorylation of a protein, as for example, a regulatory protein (inhibitory-type) associated with the Ca2+ channel. Introduction of PK-G intracellularly causes a relatively rapid inhibition of ICa(L) in both chick and rat heart cells. Such inhibition occurs for both the basal and stimulated ICa(L). In addition, the cGMP/PK-G system was reported to stimulate a phosphatase that dephosphorylates the Ca2+ channel. In addition to the slower indirect pathway—exerted via cAMP/PK-A—there is a faster more-direct pathway for ICa(L) stimulation by the -adrenergic receptor. This latter pathway involves direct modulation of the channel activity by the alpha subunit (s*) of the Gs-protein. In vascular smooth muscle cells the two pathways (direct and indirect) also appear to be present, although the indirect pathway producesinhibition of ICa(L). PK-C and calmodulin-PK also may play roles in regulation of the myocardial slow Ca2+ channels. Both of these protein kinases stimulate the activity of these channels. Thus, it appears that the slow Ca2+ channel is a complex structure, including perhaps several associated regulatory proteins, which can be regulated by a number of factors intrinsic and extrinsic to the cell, and thereby control can be exercised over the force of contraction of the heart.This review-type article was prepared by modifying an article published in a book by Sperelakiset al., 1994.  相似文献   

2.
Contraction of the heart is regulated by a number of mechanisms, such as neurotransmitters, hormones, autacoids, pH, intracellular ATP, and Ca++ ions. These actions are mediated, at least in part, by actions on the sarcolemmal slow (L-type) Ca++ channels, exerted directly or indirectly. The major mechanisms for the regulation of the slow Ca++ channels of myocardial cells includes the following. cAMP/PK-A phosphorylation stimulates the slow Ca` channel activity, whereas cGMP/PK-G phosphorylation inhibits. DAG/PK-C phosphorylation and tyrosine kinase phosphorylation are suggested to stimulate the slow Ca++ channel activity. Intracellular application of Gs protein increases the slow Ca++ currents (ICa(L)). Lowering of intracellular ATP inhibits ICa(L). Acidosis and increase in [Ca]i inhibits ICa(L). A number of changes in the Ca++ channels also occur during development and aging. Thus, it appears that the slow Ca++ channel is a complex structure, including perhaps several associated regulatory proteins, which can be regulated by a number of extrinsic and intrinsic factors, and thereby control can be exercised over the force of contraction of the heart.  相似文献   

3.
4.
The voltage-and time-dependent slow channels in the myocardial cell membrane are the major pathway by which Ca++ ions enter the cell during excitation for initiation and regulation of the force of contraction of cardiac muscle. These slow channels behave kinetically as if their gates open, close, and recover more slowly than those of the fast Na+ channels; in addition, the slow channel gates operate over a less negative (more depolarized) voltage range. Tatrodotoxin does not block the slow channels, whereas the calcium antagonistic drugs, Mn++, Co++, and La+++ ions do. The slow channels have some special properties, including their functional dependence on metabolic energy, their selective blockade by acidosis, and their regulation by cyclic AMP level. Because of their regulation by cyclic AMP, it is proposed that either the slow channel protein or an associated regulatory protein must be phosphorylated in order for the channel to be made available for voltage activation during excitation. That is, the dephosphorylated channel would be electrically silent.

The requirement for phosphorylation allows the extrinsic control of the slow channels and Ca++ influx by neurotransmitters, hormones, and autacoids that affect the cyclic nucleotide levels.  相似文献   

5.
Wu J  Qu H  Jin C  Shang Z  Wu J  Xu G  Gao Y  Zhang S 《Plant cell reports》2011,30(7):1193-1200
Many signal-transduction processes in plant cells have been suggested to be triggered by signal-induced opening of calcium ion (Ca2+) channels in the plasma membrane. Cyclic nucleotides have been proposed to lead to an increase in cytosolic free Ca2+ in pollen. However, direct recordings of cyclic-nucleotide-induced Ca2+ currents in pollen have not yet been obtained. Here, we report that cyclic AMP (cAMP) activated a hyperpolarization-activated Ca2+ channel in the Pyrus pyrifolia pollen tube using the patch-clamp technique, which resulted in a significant increase in pollen tube protoplast cytosolic-Ca2+ concentration. Outside-out single channel configuration identified that cAMP directly increased the Ca2+ channel open-probability without affecting channel conductance. cAMP-induced currents were composed of both Ca2+ and K+. However, cGMP failed to mimic the cAMP effect. Higher cytosolic free-Ca2+ concentration significantly decreased the cAMP-induced currents. These results provide direct evidence for cAMP activation of hyperpolarization-activated Ca2+ channels in the plasma membrane of pollen tubes, which, in turn, modulate cellular responses in regulation of pollen tube growth.  相似文献   

6.
Over twenty years ago it was shown that depletion of the intracellular Ca2+ store in smooth muscle triggered a Ca2+ influx mechanism. The purpose of this review it to describe recent electrophysiological data which indicate that Ca2+ influx occurs through discrete ion channels in the plasmalemma of smooth muscle cells. The effect of external Ca2+ on the amplitude and reversal potential of whole-cell and single channel currents suggests that there are at least two, and probably more, distinct store-operated channels (SOCs) which have markedly different permeabilities to Ca2+ ions. Two activation mechanisms have been identified which involve Ca2+ influx factor and protein kinase C (PKC) activation via diacylglycerol. In addition, in rabbit portal vein cells there is evidence that stimulation of α-adrenoceptors can stimulate SOC opening via PKC in a store-independent manner. There is at present little knowledge on the molecular identity of SOCs but it has been proposed that TRPC1 may be a component of the functional channel. We also summarise the data showing that SOCs may be involved in contraction and cell proliferation of smooth muscle. Finally, we highlight the similarities and differences of SOCs and receptor-operated cation channels that are present in native rabbit portal vein myocytes.  相似文献   

7.
Smooth muscle myosin light chain kinase (MLCK) plays a crucial role in artery contraction, which regulates blood pressure and blood flow distribution. In addition to this role, MLCK contributes to Ca2+ flux regulation in vascular smooth muscle (VSM) and in non-muscle cells, where cytoskeleton has been suggested to help Ca2+ channels trafficking. This conclusion is based on the use of pharmacological inhibitors of MLCK and molecular and cellular techniques developed to down-regulate the enzyme. Dissimilarities have been observed between cells and whole tissues, as well as between large conductance and small resistance arteries. A differential expression in MLCK and ion channels (either voltage-dependent Ca2+ channels or non-selective cationic channels) could account for these observations, and is in line with the functional properties of the arteries. A potential involvement of MLCK in the pathways modulating Ca2+ entry in VSM is described in the present review.  相似文献   

8.
Smooth muscle myosin light chain kinase (MLCK) plays a crucial role in artery contraction, which regulates blood pressure and blood flow distribution. In addition to this role, MLCK contributes to Ca2+ flux regulation in vascular smooth muscle (VSM) and in non-muscle cells, where cytoskeleton has been suggested to help Ca2+ channels trafficking. This conclusion is based on the use of pharmacological inhibitors of MLCK and molecular and cellular techniques developed to down-regulate the enzyme. Dissimilarities have been observed between cells and whole tissues, as well as between large conductance and small resistance arteries. A differential expression in MLCK and ion channels (either voltage-dependent Ca2+ channels or non-selective cationic channels) could account for these observations, and is in line with the functional properties of the arteries. A potential involvement of MLCK in the pathways modulating Ca2+ entry in VSM is described in the present review.  相似文献   

9.
Ca microdomains in smooth muscle   总被引:1,自引:0,他引:1  
In smooth muscle, Ca2+ controls diverse activities including cell division, contraction and cell death. Of particular significance in enabling Ca2+ to perform these multiple functions is the cell's ability to localize Ca2+ signals to certain regions by creating high local concentrations of Ca2+ (microdomains), which differ from the cytoplasmic average. Microdomains arise from Ca2+ influx across the plasma membrane or release from the sarcoplasmic reticulum (SR) Ca2+ store. A single Ca2+ channel can create a microdomain of several micromolar near (200 nm) the channel. This concentration declines quickly with peak rates of several thousand micromolar per second when influx ends. The high [Ca2+] and the rapid rates of decline target Ca2+ signals to effectors in the microdomain with rapid kinetics and enable the selective activation of cellular processes. Several elements within the cell combine to enable microdomains to develop. These include the brief open time of ion channels, localization of Ca2+ by buffering, the clustering of ion channels to certain regions of the cell and the presence of membrane barriers, which restrict the free diffusion of Ca2+. In this review, the generation of microdomains arising from Ca2+ influx across the plasma membrane and the release of the ion from the SR Ca2+ store will be discussed and the contribution of mitochondria and the Golgi apparatus as well as endogenous modulators (e.g. cADPR and channel binding proteins) will be considered.  相似文献   

10.
The stimulation of IP3 production by muscarinic agonists causes both intracellular Ca2+ release and activation of a voltage-independent cation current in differentiated N1E-115 cells, a neuroblastoma cell line derived from mouse sympathetic ganglia. Earlier work showed that the membrane current requires an increase in 3′,5′-cyclic guanosine monophosphate (cGMP) produced through the NO-synthase/guanylyl cyclase cascade and suggested that the cells may express cyclic nucleotide–gated ion channels. This was tested using patch clamp methods. The membrane permeable cGMP analogue, 8-br-cGMP, activates Na+ permeable channels in cell attached patches. Single channel currents were recorded in excised patches bathed in symmetrical Na+ solutions. cGMP-dependent single channel activity consists of prolonged bursts of rapid openings and closings that continue without desensitization. The rate of occurrence of bursts as well as the burst length increase with cGMP concentration. The unitary conductance in symmetrical 160 mM Na+ is 47 pS and is independent of voltage in the range −50 to +50 mV. There is no apparent effect of voltage on opening probability. The dose response curve relating cGMP concentration to channel opening probability is fit by the Hill equation assuming an apparent K D of 10 μm and a Hill coefficient of 2. In contrast, cAMP failed to activate the channel at concentrations as high as 100 μm. Cyclic nucleotide gated (CNG) channels in N1E-115 cells share a number of properties with CNG channels in sensory receptors. Their presence in neuronal cells provides a mechanism by which activation of the NO/cGMP pathway by G-protein–coupled neurotransmitter receptors can directly modify Ca2+ influx and electrical excitability. In N1E-115 cells, Ca2+ entry by this pathway is necessary to refill the IP3-sensitive intracellular Ca2+ pool during repeated stimulation and CNG channels may play a similar role in other neurons.  相似文献   

11.
Compensated influx and efflux of calcium ions maintain the constancy of Ca2+ concentration in cytoplasm of quiescent cells under variable external conditions. In cell plasma membrane there exist several types of Ca2+ channels with different properties, regulation mechanisms, and pharmacology. Using fluorescent Ca2+-sensitive probes, we have shown here that in T-lymphocytes under resting conditions, Ca2+ influx occurs through special constitutively active Ca2+ channels, permeable to Ni2+ and Mn2+. These channels differ from the receptor-activated SOC channels, from Ca2+ channels activated by arachidonic acid, and from calmidazolium-activated channels. Ca2+ influx rate in quiescent cells increases with a rise in temperature (Q10 =1.9). The strong dependence of the constitutively active channel activity on temperature coincided with the plasma membrane Ca2+-ATPase dependence, indicating that intracellular enzymes regulate the channel activity. To identify the constitutively active channel, we analyzed the effects of L-type Ca2+ channels, SOC channels, Ca2+-independent phospholipase A2, and calmodulin inhibitors. Of all inhibitors listed only dihydropyridine blocker of L-type voltage-dependent Ca2+ channels, isradipin, at a concentration of 1.5 μM completely suppressed calcium influx. However, the channels did not exhibit sensitivity to changes in membrane potential. Our observations testify to the existence of a new nonselective Ca2+ channel in T-lymphocyte plasma membrane and characterize the new channels pharmacologically. The results obtained are important for understanding the regulation mechanisms of Ca2+ channels in plasma membrane of non-excitable cells.  相似文献   

12.
In response to excitation of skeletal muscle fibers, trains of action potentials induce changes in the configuration of the dihydropyridine receptor (DHPR) anchored in the tubular membrane which opens the Ca2+ release channel in the sarcoplasmic reticulum membrane. The DHPR also functions as a voltage-gated Ca2+ channel that conducts L-type Ca2+ currents routinely recorded in mammalian muscle fibers, which role was debated for more than four decades. Recently, to allow a closer look into the role of DHPR Ca2+ influx in mammalian muscle, a knock-in (ki) mouse model (ncDHPR) carrying mutation N617D (adjacent to domain II selectivity filter E) in the DHPRα1S subunit abolishing Ca2+ permeation through the channel was generated [Dayal et al., 2017]. In the present study, the Mn2+ quenching technique was initially intended to be used on voltage-clamped muscle fibers from this mouse to determine whether Ca2+ influx through a pathway distinct from DHPR may occur to compensate for the absence of DHPR Ca2+ influx. Surprisingly, while N617D DHPR muscle fibers of the ki mouse do not conduct Ca2+, Mn2+ entry and subsequent quenching did occur because Mn2+ was able to permeate and produce L-type currents through N617D DHPR. N617D DHPR was also found to conduct Ba2+ and Ba2+ currents were strongly blocked by external Ca2+. Ba2+ permeation was smaller, current kinetics slower and Ca2+ block more potent than in wild-type DHPR. These results indicate that residue N617 when replaced by the negatively charged residue D is suitably located at entrance of the pore to trap external Ca2+ impeding in this way permeation. Because Ba2+ binds with lower affinity to D, Ba2+ currents occur, but with reduced amplitudes as compared to Ba2+ currents through wild-type channels. We conclude that mutations located outside the selectivity filter influence channel permeation and possibly channel gating in a fully differentiated skeletal muscle environment.  相似文献   

13.
cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca2+ currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated CaV1.3L-type Ca2+ channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant CaV1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the CaVα1 ion-conducting subunit of the CaV1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca2+ macroscopic currents and impair insulin release stimulated with high K+. In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for CaV1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the CaVα1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate CaV1.3 channels and contribute to regulate insulin secretion.  相似文献   

14.
1. Hen tracheal epithelium can be stimulated by serosal application of acetylcholine (ACh) to secrete Cl equal to ~ 60–90 μA/cm2.2. Radio-ligand-displacement for IP3, cAMP and cGMP and ion channel selective drugs in voltage clamp setups were employed to characterize second messengers and Cl, K+ and Ca2+ channels involved in the ACh response.3. ACh induced a significant rise in IP, in isolated tracheocytes, while ACh did not influence the production of cAMP in whole tissue, isolated tracheocytes or basolateral cell membrane vesicles. Further ACh desensitization did not effect cAMP level in tracheocytes. In addition neither ACh stimulation nor desensitization interfered with cAMP production in presence of 4.5 μM forskolin in tracheocytes, a level of forskolin rising base level cAMP by around five fold.4. Around 35% of ACh Cl secretion depends on Ca2+ mobilization from internal stores and about 65% on Ca2+ influx over basolateral membrane. The activated Ca2+ channel is insensitive to class I, II, III and IV Ca2+ antagonists.5. A 23187 can mimic the ACh effect although 30% is indomethacin-sensitive demonstrating a prostaglandin activated adenylyl cyclase.6. Two K+ channels are involved in ACh secretion, one sensitive to Ba2+ and quinine and both insensitive to 4-aminopyridine, apamin, charybdotoxin and TEA.7. Flufenamate and triaminopyrimidine block a non-selective ion channel likely involved in the ACh response. An ACh activated apical Cl channel is NPPB-sensitive.  相似文献   

15.
Drosophila has proved to be a valuable system for studying the structure and function of ion channels. However, relatively little is known about the regulation of ion channels, particularly that of Ca2+ channels, in Drosophila. Physiological and pharmacological differences between invertebrate and mammalian L‐type Ca2+ channels raise questions on the extent of conservation of Ca2+ channel modulatory pathways. We have examined the role of cyclic adenosine monophosphate (cAMP) cascade in modulating the dihydropyridine (DHP)‐sensitive Ca2+ channels in the larval muscles of Drosophila, using mutations and drugs that disrupt specific steps in this pathway. The L‐type (DHP‐sensitive) Ca2+ channel current was increased in the dunce mutants, which have high cAMP concentration owing to cAMP‐specific phosphodiesterase (PDE) disruption. The current was decreased in the rutabaga mutants, where adenylyl cyclase (AC) activity is altered thereby decreasing the cAMP concentration. The dunce effect was mimicked by 8‐Br‐cAMP, a cAMP analog, and IBMX, a PDE inhibitor. The rutabaga effect was rescued by forskolin, an AC activator. H‐89, an inhibitor of protein kinase‐A (PKA), reduced the current and inhibited the effect of 8‐Br‐cAMP. The data suggest modulation of L‐type Ca2+ channels of Drosophila via a cAMP‐PKA mediated pathway. While there are differences in L‐type channels, as well as in components of cAMP cascade, between Drosophila and vertebrates, main features of the modulatory pathway have been conserved. The data also raise questions on the likely role of DHP‐sensitive Ca2+ channel modulation in synaptic plasticity, and learning and memory, processes disrupted by the dnc and the rut mutations. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 491–500, 1999  相似文献   

16.
Smooth muscle contraction is regulated by changes in cytosolic Ca2+ concentration ([Ca2+]i). In response to stimulation, Ca2+ increase in a single cell can propagate to neighbouring cells through gap junctions, as intercellular Ca2+ waves. To investigate the mechanisms underlying Ca2+ wave propagation between smooth muscle cells, we used primary cultured rat mesenteric smooth muscle cells (pSMCs). Cells were aligned with the microcontact printing technique and a single pSMC was locally stimulated by mechanical stimulation or by microejection of KCl. Mechanical stimulation evoked two distinct Ca2+ waves: (1) a fast wave (2 mm/s) that propagated to all neighbouring cells, and (2) a slow wave (20 μm/s) that was spatially limited in propagation. KCl induced only fast Ca2+ waves of the same velocity as the mechanically induced fast waves. Inhibition of gap junctions, voltage-operated calcium channels, inositol 1,4,5-trisphosphate (IP3) and ryanodine receptors, shows that the fast wave was due to gap junction mediated membrane depolarization and subsequent Ca2+ influx through voltage-operated Ca2+ channels, whereas, the slow wave was due to Ca2+ release primarily through IP3 receptors. Altogether, these results indicate that temporally and spatially distinct mechanisms allow intercellular communication between SMCs. In intact arteries this may allow fine tuning of vessel tone.  相似文献   

17.
To determine possible sources of Ca2+ during excitation-contraction coupling in smooth muscle, a vibrating Ca2+-selective electrode was used to measure Ca2+ flux during the process of contraction. The smooth muscle model was the longitudinal muscle of the body wall of a sea cucumberSclerodactyla briareus. Because acetylcholine caused slow contractions of the muscle that were inhibited by Ca2+ channel blockers diltiazem and verapamil in earlier mechanical studies, we chose a vibrating Ca2+-selective electrode as our method to test the hypothesis that acetylcholine may be stimulating Ca2+ influx across the sarcolemma, providing a Ca2+ source during excitation-contraction coupling. Acetylcholine treatment stimulated a net Ca2+ efflux that was both dose and time dependent. We then tested two L-type Ca2+ channel blockers, diltiazem and verapamil, and two non-specific Ca2+ blockers, cobalt (Co2+) and lanthanum (La3+) on acetylcholine-induced Ca2+ flux. All four Ca2+ blockers tested potently inhibited Ca2+ efflux induced by physiological doses of acetylcholine. We propose that the acetylcholine-induced Ca2+ efflux was the result of, first, Ca2+ influx through voltage-sensitive L-type Ca2+ channels, then the rapid extrusion of Ca2+ by an outwardly directed carrier such as the Na–Ca exchanger as suggested by Li+ substitution experiments. The vibrating Ca2+ electrode has provided new insights on the active and complex role the sarcolemma plays in Ca2+ homeostasis and regulating Ca2+ redistribution during excitation-contraction coupling.Abbreviations ACh acetylcholine - E-C coupling excitation-contraction coupling - LMBW longitudinal muscle of the body wall  相似文献   

18.
Calcium (Ca2+) plays crucial roles in regulation of pollen tube growth. The influx of Ca2+ into the pollen tube is mediated by ion channels, and the density and activity of Ca2+ channels in pollen plasma membranes critically determines their electrical properties. In this report, using whole-cell and single-channel patch-clamping techniques, we investigated developmental changes of hyperpolarization-activated Ca2+ channel activity in pear (Pyrus pyrifolia) pollen and its relationship with pollen viability. For both pollen and pollen tubes, hyperpolarization-activated Ca2+ channels had the same conductance and cAMP sensitivity, indicating that they were the same channels. However, the Ca2+ current density in pollen tube protoplasts was greater than that in pollen protoplasts. Compared with day-3 flowers’ pollen, hyperpolarization-activated Ca2+ current density was significantly lower in day 0 and day 3 flowers’ pollen, which was consistent with the pollen germination and pollen tube growth, indicating that pollen protoplasts’ increased Ca2+ current density may have enhanced the pollen viability. During pollen tube elongation, pollen tube plasma membrane Ca2+ current density increased with increased length pollen tubes up to 300 μm. All of these results indicated that hyperpolarization-activated Ca2+ channel activity was associated with in pear pollen development and may have a causal link between Ca2+ channel activity and pollen viability.  相似文献   

19.
20.
Transient receptor potential vanilloid 4 (TRPV4) channels are Ca2+-permeable, nonselective cation channels expressed in multiple tissues, including smooth muscle. Although TRPV4 channels play a key role in regulating vascular tone, the mechanisms controlling Ca2+ influx through these channels in arterial myocytes are poorly understood. Here, we tested the hypothesis that in arterial myocytes the anchoring protein AKAP150 and protein kinase C (PKC) play a critical role in the regulation of TRPV4 channels during angiotensin II (AngII) signaling. Super-resolution imaging revealed that TRPV4 channels are gathered into puncta of variable sizes along the sarcolemma of arterial myocytes. Recordings of Ca2+ entry via single TRPV4 channels (“TRPV4 sparklets”) suggested that basal TRPV4 sparklet activity was low. However, Ca2+ entry during elementary TRPV4 sparklets was ∼100-fold greater than that during L-type CaV1.2 channel sparklets. Application of the TRPV4 channel agonist GSK1016790A or the vasoconstrictor AngII increased the activity of TRPV4 sparklets in specific regions of the cells. PKC and AKAP150 were required for AngII-induced increases in TRPV4 sparklet activity. AKAP150 and TRPV4 channel interactions were dynamic; activation of AngII signaling increased the proximity of AKAP150 and TRPV4 puncta in arterial myocytes. Furthermore, local stimulation of diacylglycerol and PKC signaling by laser activation of a light-sensitive Gq-coupled receptor (opto-α1AR) resulted in TRPV4-mediated Ca2+ influx. We propose that AKAP150, PKC, and TRPV4 channels form dynamic subcellular signaling domains that control Ca2+ influx into arterial myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号