首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The possibility that an enhanced supply of dissolved inorganic carbon (DIC=CO2+HCO3-) to the root solution could increase the growth of Lycopersicon esculentum (L.) Mill. cv. F144 was investigated under both saline and non-saline root medium conditions. Tomato seedlings were grown in hydroponic culture with and without NaCl and the root solution was aerated with CO2 concentrations in the range between 0 and 5000 mol mol-1. The biomass of both control and salinity-stressed plants grown at high temperatures (daily maximum of 37C) and an irradiance of 1500 mol m-2 s-1 was increased by up to 200% by enriched rhizosphere DIC. The growth rates of plants grown with irradiances of less than 100 mol m-2 s-1 were increased by elevated rhizosphere DIC concentrations only when grown at high shoot temperatures (35C) or with salinity 28°C). At high light intensities, the photosynthetic rate, the CO2 and light-saturated photosynthetic rate (jmax) and the stomatal conductance of plants grown at high light intensity were lower in plants supplied with enriched compared to ambient DIC. This was interpreted as 'down-regulation' of the photosynthetic system in plants supplied with elevated DIC. Labelled organic carbon in the xylem sap derived from root DI14C incorporation was found to be sufficient to deliver carbon to the shoot at rates equivalent to 1% and 10% of the photosynthetic rate of the plants supplied with ambient- and enriched-DIC, respectively. It was concluded that organic carbon derived from DIC incorporation and translocated in the xylem from the root to the shoot may provide a source of carbon for the shoots, especially under conditions where low stomatal conductance may be advantageous, such as salinity stress, high shoot temperatures and high light intensities.  相似文献   

3.
采用盆栽控制试验对黄土丘陵区白羊草在不同CO2浓度(400和800 μmol·mol-1)和施氮水平(0、2.5、5.0 g N·m-2·a-1)条件下根际和非根际土壤水溶性有机碳(DOC)和水溶性有机氮(DON)的变化特征进行研究.结果表明: CO2浓度升高对白羊草根际和非根际土壤DOC、水溶性总氮(DTN)、DON、水溶性铵态氮(NH4+-N)、水溶性硝态氮(NO3--N)含量均无显著影响.施氮显著提高了根际和非根际土壤DTN、NO3--N含量和根际土壤DON含量,显著降低了根际土壤DOC/DON.在各处理条件下,根际土壤DTN、NO3--N和DON含量均显著低于非根际土壤,根际土壤DOC/DON显著高于非根际土壤.短期CO2浓度升高对黄土丘陵区土壤水溶性有机碳、氮含量无显著影响,而氮沉降的增加在一定程度上改善了土壤中水溶性氮素缺乏的状况,但并不足以满足植被对水溶性氮素的需求.  相似文献   

4.
Nelson DM  Cann IK  Mackie RI 《PloS one》2010,5(12):e15897

Background

Archaea are important to the carbon and nitrogen cycles, but it remains uncertain how rising atmospheric carbon dioxide concentrations ([CO2]) will influence the structure and function of soil archaeal communities.

Methodology/Principal Findings

We measured abundances of archaeal and bacterial 16S rRNA and amoA genes, phylogenies of archaeal 16S rRNA and amoA genes, concentrations of KCl-extractable soil ammonium and nitrite, and potential ammonia oxidation rates in rhizosphere soil samples from maize and soybean exposed to ambient (∼385 ppm) and elevated (550 ppm) [CO2] in a replicated and field-based study. There was no influence of elevated [CO2] on copy numbers of archaeal or bacterial 16S rRNA or amoA genes, archaeal community composition, KCl-extractable soil ammonium or nitrite, or potential ammonia oxidation rates for samples from maize, a model C4 plant. Phylogenetic evidence indicated decreased relative abundance of crenarchaeal sequences in the rhizosphere of soybean, a model leguminous-C3 plant, at elevated [CO2], whereas quantitative PCR data indicated no changes in the absolute abundance of archaea. There were no changes in potential ammonia oxidation rates at elevated [CO2] for soybean. Ammonia oxidation rates were lower in the rhizosphere of maize than soybean, likely because of lower soil pH and/or abundance of archaea. KCl-extractable ammonium and nitrite concentrations were lower at elevated than ambient [CO2] for soybean.

Conclusion

Plant-driven shifts in soil biogeochemical processes in response to elevated [CO2] affected archaeal community composition, but not copy numbers of archaeal genes, in the rhizosphere of soybean. The lack of a treatment effect for maize is consistent with the fact that the photosynthesis and productivity of maize are not stimulated by elevated [CO2] in the absence of drought.  相似文献   

5.
This work originates from three facts: (i) changes in CO2 availability influence metabolic processes in algal cells; (ii) Spatial and temporal variations of nitrogen availability cause repercussions on phytoplankton physiology; (iii) Growth and cell composition are dependent on the stoichiometry of nutritional resources. In this study, we assess whether the impact of rising pCO2 is influenced by N availability, through the impact that it would have on the C/N stoichiometry, in conditions of N sufficiency. Our experiments used the dinoflagellate Protoceratium reticulatum, which we cultured under three CO2 regimes (400, 1,000, and 5,000 ppmv, pH of 8.1) and either variable (the NO3? concentration was always 2.5 mmol · L?1) or constant (NO3? concentration varied to maintain the same Ci/NO3? ratio at all pCO2) Ci/NO3? ratio. Regardless of N availability, cells had higher specific growth rates, but lower cell dry weight and C and N quotas, at elevated CO2. The carbohydrate pool size and the C/N was unaltered in all treatments. The lipid content only decreased at high pCO2 at constant Ci/NO3? ratio. In the variable Ci/NO3? conditions, the relative abundance of Rubisco (and other proteins) also changed; this did not occur at constant Ci/NO3?. Thus, the biomass quality of P. reticulatum for grazers was affected by the Ci/NO3? ratio in the environment and not only by the pCO2, both with respect to the size of the main organic pools and the composition of the expressed proteome.  相似文献   

6.
7.
Chloroplasts with high rates of photosynthetic O2 evolution (up to 120 mol O2· (mg Chl)-1·h-1 compared with 130 mol O2· (mg Chl)-1·h-1 of whole cells) were isolated from Chlamydomonas reinhardtii cells grown in high and low CO2 concentrations using autolysine-digitonin treatment. At 25° C and pH=7.8, no O2 uptake could be observed in the dark by high- and low-CO2 adapted chloroplasts. Light saturation of photosynthetic net oxygen evolution was reached at 800 mol photons·m-2·s-1 for high- and low-CO2 adapted chloroplasts, a value which was almost identical to that observed for whole cells. Dissolved inorganic carbon (DIC) saturation of photosynthesis was reached between 200–300 M for low-CO2 adapted chloroplasts, whereas high-CO2 adapted chloroplasts were not saturated even at 700 M DIC. The concentrations of DIC required to reach half-saturated rates of net O2 evolution (Km(DIC)) was 31.1 and 156 M DIC for low- and high-CO2 adapted chloroplasts, respectively. These results demonstrate that the CO2 concentration provided during growth influenced the photosynthetic characteristics at the whole cell as well as at the chloroplast level.Abbreviations Chl chlorophyll - DIC dissolved inorganic carbon - Km(DIC) coneentration of dissolved inorganic carbon required for the rate of half maximal net O2 evolution - PFR photon fluence rate - SPGM silicasol-PVP-gradient medium  相似文献   

8.
Soybeans were grown for three seasons in open-top field chambersto determine (1) whether elevated CO2 (360 versus 700 µmolmol–1) alleviates some of the yield loss due to pollutantO3, (2) whether the partial stomatal closure resulting fromchronic O3 exposure (charcoal-filtered air versus 1.5 ambientconcentrations) is a cause or result of decreased photosynthesis,and (3) possible implications of CO2/O3 interactions to climatechange studies using elevated CO2. Leaf conductance was reducedby elevated CO2, regardless of O3 level, or by exposure to O3alone. As.a result of these effects on conductance, high CO2reduced estimated midday O3 flux into the leaf by an averageof 50% in charcoal-filtered air and 35% in the high O3 treatment.However, while exposure to O3 reduced seed yields by 41% atambient CO2 levels, the yield reduction was completely amelioratedby elevated CO2. The threshold midday O3 flux for yield lossappears to be 20–30 nmol m–2 s–1 in this study.Although elevated CO2 increased total biomass production, itdid not increase seed yields. A/Ci curves show a large reductionin the stomatal limitation to photosynthesis due to elevatedCO2 but no effect of O3. These data demonstrate that (1) reducedconductance due to O3 is the result, and not the cause, of reducedphotosynthesis, (2) 700 µmol mol–1 CO2 can completelyameliorate yield losses due to O3 within the limits of theseexperiments, and (3) some reports of increased yields underelevated CO2 treatments may, at least in part, reflect the ameliorationof unrecognized suppression of yield by O3 or other stresses. Key words: Stomatal limitation, elevated CO2, O3 flux, Glycine max, yield suppression  相似文献   

9.
Uptake of dissolved inorganic carbon (DIC) from a nutrient solution by willow roots was measured in light and darkness and the distribution in the plant of DIC taken up by the roots was determined. It was also studied whether the transport system could be activated by preincubation with dissolved inorganic carbon.
Willow plants ( Salix cv. Aquatica gigantea) grown in hydroponic culture media were preincubated for 2 days with or without 0.74 mM NaHCO3. After preincubation, either unlabelled or [14C]-labelled NaHCO3 was injected into the media and after 1, 5, 10 and 24 h either in light or in darkness the plants were harvested in pieces into liquid nitrogen, lyophilized and burned in a combustion chamber.
14C was transported through the roots to the shoots and leaves both in light and in darkness, although incorporation of 14C in darkness was only half of that in light at the end of the 24-h feeding period. Both in light and in darkness the amount of 14C increased in all parts of willow plants with time. In light the rate of labelling was highest into cuttings and shoots. In darkness more than half of the total label was detected in cuttings of both the non-activated and the activated treatments.
In the shoots the middle part was most strongly labelled after 5 and 10 h, but after 24 h 14C moved towards the base of the shoot. In the leaves at all feeding times most radioactivity was incorporated into the young, fully open leaves on the upper part of the shoots. Preincubation of plants with unlabelled NaHCO3 in growth media had no clear effect on the rate of DIC uptake either in light or in darkness.  相似文献   

10.
Scots pine (Pinus sylvestris L.) trees, aged about 20 years old, growing on a natural pine heath were exposed to two concentrations of CO2 (ambient CO2 and double-ambient CO2) and two O3 regimes (ambient O3 and double-ambient O3) and their combination in open-top chambers during growing seasons 1994, 1995 and 1996. Concentrations of foliar starch and secondary compounds are reported in this paper. Starch concentrations remained unaffected by elevated CO2 and/or O3 concentrations during the first 2 study years. But in the autumn of the last study year, a significantly higher concentration of starch was found in current-year needles of trees exposed to elevated CO2 compared with ambient air. There were large differences in concentrations of starch and secondary compounds between individual trees. Elevated concentrations of CO2 and/or O3 did not have any significant effects on the concentrations of foliar total monoterpenes, total resin acids or total phenolics. Significantly higher concentrations of monoterpenes and resin acids and mostly lower concentrations of starch were found in trees growing without chambers than in those growing in open-top chambers, while there were no differences in concentrations of total phenolics between trees growing without or in chambers. The results suggest that elevated concentrations of CO2 might increase foliar starch concentrations in Scots pine, while secondary metabolites remain unaffected. Realistically elevated O3 concentrations do not have clear effects on carbon allocation to starch and secondary compounds even after 3 exposure years. Received: 2 June 1997 / Accepted: 12 December 1997  相似文献   

11.
Global emissions of atmospheric CO2 and tropospheric O3 are rising and expected to impact large areas of the Earths forests. While CO2 stimulates net primary production, O3 reduces photosynthesis, altering plant C allocation and reducing ecosystem C storage. The effects of multiple air pollutants can alter belowground C allocation, leading to changes in the partial pressure of CO2 (pCO2) in the soil , chemistry of dissolved inorganic carbonate (DIC) and the rate of mineral weathering. As this system represents a linkage between the long- and short-term C cycles and sequestration of atmospheric CO2, changes in atmospheric chemistry that affect net primary production may alter the fate of C in these ecosystems. To date, little is known about the combined effects of elevated CO2 and O3 on the inorganic C cycle in forest systems. Free air CO2 and O3 enrichment (FACE) technology was used at the Aspen FACE project in Rhinelander, Wisconsin to understand how elevated atmospheric CO2 and O3 interact to alter pCO2 and DIC concentrations in the soil. Ambient and elevated CO2 levels were 360±16 and 542±81 l l–1, respectively; ambient and elevated O3 levels were 33±14 and 49±24 nl l–1, respectively. Measured concentrations of soil CO2 and calculated concentrations of DIC increased over the growing season by 14 and 22%, respectively, under elevated atmospheric CO2 and were unaffected by elevated tropospheric O3. The increased concentration of DIC altered inorganic carbonate chemistry by increasing system total alkalinity by 210%, likely due to enhanced chemical weathering. The study also demonstrated the close coupling between the seasonal 13C of soil pCO2 and DIC, as a mixing model showed that new atmospheric CO2 accounted for approximately 90% of the C leaving the system as DIC. This study illustrates the potential of using stable isotopic techniques and FACE technology to examine long- and short-term ecosystem C sequestration.  相似文献   

12.
陈静  陈欣  唐建军 《应用生态学报》2004,15(12):2388-2392
综述了大气CO2浓度升高条件下,植物根际土壤环境、根际土壤微生物和植物菌根形成的变化趋势等方面的研究进展,CO2浓度升高,运转到根系的碳水化合物增加,根际环境、根际微生物活性、微生物群落结构以及菌根共生体的形成发生变化.提出在CO2浓度升高条件下,根际微生物和菌根真菌群落的变化对植物群落和陆地生态系统碳动态的调节是今后的研究趋向。  相似文献   

13.
Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short‐term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil‐borne microbial community. Long‐term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by 13C pulse‐chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA‐stable isotope probing (RNA‐SIP), in combination with real‐time PCR and PCR‐DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the 13C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes.  相似文献   

14.
The effect of increased dissolved carbon dioxide concentrations on growth of Corynebacterium glutamicum was studied with continuous turbidostatic cultures. The carbon sources were either l-lactate or d-glucose. To increase the dissolved carbon dioxide concentration the carbon dioxide partial pressure of the inlet gas stream pCO2,IN was increased stepwise from 0.0003 bar (air) up to 0.79 bar, while the oxygen partial pressure of the inlet gas stream was kept constant at 0.21 bar. For each resulting carbon dioxide partial pressure pCO2 the maximum specific growth rate mu(max) was determined from the feed rate resulting from the turbidostatic control. On d-glucose and pCO2 up to 0.26 bar, mu(max) was mostly constant around 0.58 h(-1). Higher pCO2 led to a slight decrease of mu(max). On l-lactate mu(max) increased gradually with increasing carbon dioxide partial pressures from 0.37 h(-1) under aeration with air to a maximum value of 0.47 h(-1) at a pCO2 of 0.26 bar. At very high pCO2 (0.81 bar) mu(max) decreased down to 0.35 h(-1) independent of the carbon source.  相似文献   

15.
We investigated the influence of an increased inorganic carbon supply in the root medium on NO?3 uptake and assimilation in seedlings of Lycopersicon esculentum (L.) Mill. cv. F144. The seedlings were pre-grown for 4 to 7 days with 0 or 100 mM NaCl in hydroponic culture using 0.2 mM NO?3 (group A) or 0.2 mM NH+4 (group B) as nitrogen source. The nutrient solution for group A plants was aerated with air or with air containing 4 800 μumol mol?1 CO2. Nitrate uptake rate and root and leaf malate contents in these plants were determined. The plants of group B were subdivided into two sets. Plants of one set were transferred either to N-free solution containing 0 or 5 mM NaHCO3, or to a medium containing 2 mM NO?3 and 5 mM NaHCO3. Both sets of group B plants were grown for 12 h in darkness prior to 2 h of illumination, and were assayed for malate content and NO?3 uptake rate (only for plants grown in N-free solution). The second set of group B plants was labeled with 14C by a 1-h pulse of H14CO?3 which was added to a 5 mM NaHCO3 solution containing 0 or 100 mM NaCl and 0 or 2 mM NO?3, and 14C-assimilates were extracted and fractionated. The roots of group B plants growing in carbonated medium accumulated twice as much malate as did control plants. This malate was accumulated only when NO?3 was absent from the root medium. Both a high level of root malate and aeration with CO2-enriched air stimulated NO?3 uptake. Analysis of 14C-assimilates indicated that with no NO?3 in the medium, the 14C was present mainly in organic acids, whereas with NO?3, a large proportion of 14C was incorporated into amino acids. Transport of root-incorporated 14C to the shoot was enhanced by NO?3, while the amino acid fraction was the major 14C-assimilates in the shoot. It is concluded that inorganic carbon fixed through phosphoenolpyruvate carboxylase (EC 4.1.1.31) in roots of tomato plants may have two fates: (a) as a carbon skeleton for amino acid synthesis; and (b) to accumulate, mainly as malate, in the roots, in the absence of a demand for the carbon skeleton. Inorganic carbon fixation in the root provides carbon skeletons for the assimilation of the NH+4 resulting from NO3 reduction, and the subsequent removal of amino acids through the xylem. This ‘removal’ of NO?3 from the cytoplasm of the root cells may in turn increase NO?3 uptake.  相似文献   

16.
Li  Zhong  Yagi  K.  Sakai  H.  Kobayashi  K. 《Plant and Soil》2004,258(1):81-90
Rice (Oryza sativa) was grown in six sunlit, semi-closed growth chambers for two seasons at 350 L L–1 (ambient) and 650 L L–1 (elevated) CO2 and different levels of nitrogen (N) supplement. The objective of this research was to study the influence of CO2 enrichment and N nutrition on rice plant growth, soil microbial biomass, dissolved organic carbon (DOC) and dissolved CH4. Elevated CO2 concentration ([CO2]) demonstrated a wide range of enhancement to both above- and below-ground plant biomass, in particular to stems and roots (for roots when N was not limiting) in the mid-season (80 days after transplanting) and stems/ears at the final harvest, depending on season and the level of N supplement. Elevated [CO2] significantly increased microbial biomass carbon in the surface 5 cm soil when N (90 kg ha–1) was in sufficient supply. Low N supplement (30 kg ha–1) limited the enhancement of root growth by elevated [CO2], leading consequently to diminished response of soil microbial biomass carbon to CO2 enrichment. The concentration of dissolved CH4 (as well as soil DOC, but to a lesser degree) was observed to be positively related to elevated [CO2], especially at high rate of N application (120 kg ha–1) or at 10 cm depth (versus 5 cm depth) in the later half of the growing season (at 80 kg N ha–1). Root senescence in the late season complicated the assessment of the effect of elevated [CO2] on root growth and soil organic carbon turnover and thus caution should be taken when interpreting respective high CO2 results.  相似文献   

17.
Effects of elevated CO(2) on soil microorganisms are known to be mediated by various interactions with plants, for which such effects are relatively poorly documented. In this review, we summarize and synthesize results from studies assessing impacts of elevated CO(2) on soil ecosystems, focusing primarily on plants and a variety the of microbial processes. The processes considered include changes in microbial biomass of C and N, microbial number, respiration rates, organic matter decomposition, soil enzyme activities, microbial community composition, and functional groups of bacteria mediating trace gas emission such as methane and nitrous oxide. Elevated CO(2) in atmosphere may enhance certain microbial processes such as CH(4) emission from wetlands due to enhanced carbon supply from plants. However, responses of extracellular enzyme activities and microbial community structure are still controversy, because interferences with other factors such as the types of plants, nutrient availabilitial in soil, soil types, analysis methods, and types of CO(2) fumigation systems are not fully understood.  相似文献   

18.
19.
20.
Soil and ecosystem trace gas fluxes are commonly measured using the dynamic chamber technique. Although the chamber pressure anomalies associated with this method are known to be a source of error, their effects have not been fully characterized. In this study, we use results from soil gas-exchange experiments and a soil CO2 transport model to characterize the effects of chamber pressure on soil CO2 efflux in an annual California grassland. For greater than ambient chamber pressures, experimental data show that soil-surface CO2 flux decreases as a nonlinear function of increasing chamber pressure; this decrease is larger for drier soils. In dry soil, a gauge pressure of 0.5 Pa reduced the measured soil CO2 efflux by roughly 70% relative to the control measurement at ambient pressure. Results from the soil CO2 transport model show that pressurizing the flux chamber above ambient pressure effectively flushes CO2 from the soil by generating a downward flow of air through the soil air-filled pore space. This advective flow of air reduces the CO2 concentration gradient across the soil–atmosphere interface, resulting in a smaller diffusive flux into the chamber head space. Simulations also show that the reduction in diffusive flux is a function of chamber pressure, soil moisture, soil texture, the depth distribution of soil CO2 generation, and chamber diameter. These results highlight the need for caution in the interpretation of dynamic chamber trace gas flux measurements. A portion of the frequently observed increase in net ecosystem carbon uptake under elevated CO2 may be an artifact resulting from the impact of chamber pressurization on soil CO2 efflux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号