首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-Acetylmannosamine (ManNAc) is the first committed intermediate in sialic acid metabolism. Thus, the mechanisms that control intracellular ManNAc levels are important regulators of sialic acid production. In prokaryotic organisms, UDP-N-acetylglucosamine (GlcNAc) 2-epimerase and GlcNAc-6-P 2-epimerase are two enzymes capable of generating ManNAc from UDP-GlcNAc and GlcNAc-6-P, respectively. We have purified for the first time native GlcNAc-6-P 2-epimerase from bacterial source to apparent homogeneity (1 200 fold) using Butyl-agarose, DEAE-FPLC and Mannose-6-P-agarose chromatography. By SDS/PAGE the pure enzyme showed a molecular mass of 38.4 +/- 0.2 kDa. The maximum activity was achieved at pH 7.8 and 37 degrees C. Under these conditions, the K(m) calculated for GlcNAc-6-P was 1.5 mM. The 2-epimerase activity was activated by Na(+) and inhibited by mannose-6-P but not mannose-1-P. Genetic analysis revealed high homology with bacterial isomerases. GlcNAc-6-P 2-epimerase from E. coli K92 is a ManNAc-inducible protein and is detected from the early logarithmic phase of growth. Our results indicate that, unlike UDP-GlcNAc 2-epimerase, which promotes the biosynthesis of sialic acid, GlcNAc-6-P 2-epimerase plays a catabolic role. When E. coli grows using ManNAc as a carbon source, this enzyme converts the intracellular ManNAc-6-P generated into GlcNAc-6-P, diverting the metabolic flux of ManNAc to GlcNAc.  相似文献   

2.
3.
Uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc) is a precursor of the bacterial and fungal cell wall. It is also used in a component of N-linked glycosylation and the glycosylphosphoinositol anchor of eukaryotic proteins. It is synthesized from N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and uridine-5'-triphosphate (UTP) by UDP-GlcNAc pyrophosphorylase (UAP). This is an S(N)2 reaction; the non-esterified oxygen atom of the GlcNAc-1-P phosphate group attacks the alpha-phosphate group of UTP. We determined crystal structures of UAP from Candida albicans (CaUAP1) without any ligands and also complexed with its substrate or with its product. The series of structures in different forms shows the induced fit movements of CaUAP1. Three loops approaching the ligand molecule close the active site when ligand is bound. In addition, Lys-421, instead of the metal ion in prokaryotic UAPs, is coordinated by both phosphate groups of UDP-Glc-NAc and acts as a cofactor. However, a magnesium ion enhances the enzymatic activity of CaUAP1, and thus we propose that the magnesium ion increases the affinity between UTP and the enzyme by coordinating to the alpha- and gamma-phosphate group of UTP.  相似文献   

4.
UDP-GlcNAc, an activated and essential form of GlcNAc which is an important component in the polysaccharide structure of most organisms, is synthesized from GlcNAc-1-P and UTP by GlcNAc-1-P UTase. We previously reported the identification of the extremely thermostable ST0452 protein, which has dual sugar-1-P NTase activities (Glc-1-P TTase and GlcNAc-1-P UTase activities) from an acidothermophilic archaeon, Sulfolobus tokodaii strain 7. Detailed analyses of the protein indicated that the activity is slightly lower than that of bacteria. For industrial applications, activity needs to be increased without decreasing thermostability. Therefore, to enhance this activity, we introduced mutations into the amino acid residues located within the predicted reaction centre by targeted mutagenesis. All 12 mutant ST0452 proteins showed no decrease in thermostability. Among them, six mutant proteins were found to have increased GlcNAc-1-P UTase activity under optimal reaction conditions with sufficient substrates or an appropriate metal ion. Our results indicate that targeted mutagenesis is a powerful technique for in vitro production of a thermostable enzyme with enhanced activity. The results of this study also indicate that the space for the metal ion is important for selecting the type of metal ion and also affects the rate of the reaction.  相似文献   

5.
Li Y  Zhou Y  Ma Y  Li X 《Carbohydrate research》2011,(13):1714-1720
GlmM and GlmU are key enzymes in the biosynthesis of UDP-N-acetyl-d-glucosamine (UDP-GlcNAc), an essential precursor of peptidoglycan and the rhamnose–GlcNAc linker region in the mycobacterial cell wall. These enzymes are involved in the conversion of two important precursors of UDP-GlcNAc, glucosamine-6-phosphate (GlcN-6-P) and glucosamine-1-phosphate (GlcN-1-P). GlmM converts GlcN-6-P to GlcN-1-P, GlmU is a bifunctional enzyme, whereby GlmU converts GlcN-1-P to GlcNAc-1-P and then catalyzes the formation of UDP-GlcNAc from GlcNAc-1-P and uridine triphosphate. In the present study, methyl 2-amino-2-deoxyl-α-d-glucopyranoside 6-phosphate (), methyl 2-amino-2-deoxyl-β-d-glucopyranoside 6-phosphate (), two analogs of GlcN-6-P, were synthesized as GlmM inhibitors; 2-azido-2-deoxy-α-d-glucopyranosyl phosphate (2) and 2-amino-2,3-dideoxy-3-fluoro-α-d-glucopyranosyl phosphate (3), analogs of GlcN-1-P, were synthesized firstly as GlmU inhibitors. Compounds , , 2, and 3 as possible inhibitors of mycobacterial GlmM and GlmU are reported herein. Compound 3 showed promising inhibitory activities against GlmU, whereas , and 2 were inactive against GlmM and GlmU even at high concentrations.  相似文献   

6.
Zhou Y  Xin Y  Sha S  Ma Y 《Archives of microbiology》2011,193(10):751-757
The UDP-N-acetylglucosamine (UDP-GlcNAc) is present as one of the glycosyl donors for disaccharide linker (d-N-GlcNAc-l-rhamnose) and the precursor of peptidoglycan in mycobacteria. The bifunctional enzyme GlmU involves in the last two sequential steps of UDP-GlcNAc synthetic pathway. Glucosamine-1-phosphate acetyltransferase catalyzes the formation of N-acetylglucosamine-1-phosphate (GlcNAc-1-P) from glucosamine-1-phosphate (GlcN-1-P) and acetyl coenzyme A (Acetyl CoA), and N-acetylglucosamine-1-phosphate uridyltransferase catalyzes the synthesis of UDP-GlcNAc from GlcNAc-1-P and UTP. The previous studies demonstrating the essentiality of GlmU to mycobacterial survival supported GlmU as a novel and potential target for TB drugs. In this work, two accurate and simple colorimetric assays based on 96-well microtiter plate were developed to measure the kinetic properties of bifunctional GlmU including initial velocity, optimal temperature, optimal pH, the effect of Mg2+, and the kinetic parameters. Both of the colorimetric assays for bifunctional GlmU enzyme activities and the kinetic properties will facilitate high-throughput screening of GlmU inhibitors.  相似文献   

7.
Zhai Y  Liang M  Fang J  Wang X  Guan W  Liu XW  Wang P  Wang F 《Biotechnology letters》2012,34(7):1321-1326
The availability of uridine 5'-diphosphate N-acetylglucosamine (UDP-GlcNAc) is a prerequisite for the GlcNAc-transferase-catalyzed glycosylation reaction. UDP-GlcNAc has already been synthesized using an N-acetylhexosamine 1-kinase (NahK) and a GlcNAc-1-P uridyltransferase (truncated GlmU) and here, a fusion enzyme was constructed with truncated GlmU and NahK. After determination of the optimum catalytic condition (pH 8.0 at 40 °C), the fusion enzyme was used to synthesize UDP-GlcNAc in a single step with a yield of 88 % from GlcNAc, ATP and UTP. Furthermore, a simplified purification method was demonstrated using separation by gel filtration after by-product digestion with alkaline phosphatase. An overall yield of 77 % and a purity of over 90 % were achieved.  相似文献   

8.
N-acetylglucosamine-phosphate mutase (AGM1) is an essential enzyme in the synthetic process of UDP-N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is a UDP sugar that serves as a biosynthetic precursor of glycoproteins, mucopolysaccharides, and the cell wall of bacteria. Thus, a specific inhibitor of AGM1 from pathogenetic fungi could be a new candidate for an antifungal reagent that inhibits cell wall synthesis. AGM1 catalyzes the conversion of N-acetylglucosamine 6-phosphate (GlcNAc-6-P) into N-acetylglucosamine 1-phosphate (GlcNAc-1-P). This enzyme is a member of the alpha-D-phosphohexomutase superfamily, which catalyzes the intramolecular phosphoryl transfer of sugar substrates. Here we report the crystal structures of AGM1 from Candida albicans for the first time, both in the apoform and in the complex forms with the substrate and the product, and discuss its catalytic mechanism. The structure of AGM1 consists of four domains, of which three domains have essentially the same fold. The overall structure is similar to those of phosphohexomutases; however, there are two additional beta-strands in domain 4, and a circular permutation occurs in domain 1. The catalytic cleft is formed by four loops from each domain. The N-acetyl group of the substrate is recognized by Val-370 and Asn-389 in domain 3, from which the substrate specificity arises. By comparing the substrate and product complexes, it is suggested that the substrate rotates about 180 degrees on the axis linking C-4 and the midpoint of the C-5-O-5 bond in the reaction.  相似文献   

9.
The GlcNAc-1-P-transferase was solubilized from microsomal preparations of soybean cultured cells by treatment with 1% Triton X-100. The solubilized enzyme catalyzed the formation of dolichyl pyrophosphoryl-GlcNAc when incubated with UDP-GlcNAc and dolichyl phosphate. The GlcNAc-1-P-transferase activity was stimulated by the addition of phosphatidylglycerol and phosphatidylinositol, but was inhibited by phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. The Km value for dolichyl-phosphate was 6.2 micromolar and that determined for UDP-GlcNAc was 0.42 micromolar. The pH optimum for the GlcNAc-1-P reaction was between 7.2 and 7.6; maximum activity occurred at about 10 millimolar Mg2+. The addition of unlabeled GDP-mannose or UDP-glucose considerably inhibited enzyme activity which could be restored to nearly the original value by addition of more dolichyl phosphate to the incubation mixture. On the other hand, the addition of unlabeled ADP-glucose and GDP-glucose enhanced the enzyme activity. This stimulation by these sugar nucleotides was found to be due to the protection of the substrate UDP-[3H]-GlcNAc from pyrophosphatase degradation. The GlcNAc-1-P-transferase reaction was very sensitive to tunicamycin and 50% inhibition required less than 1 microgram of antibiotic per milliliter. Amphomycin, showdomycin, and diumycin also inhibited this reaction but at higher concentrations.  相似文献   

10.
We used a comparative genomics approach implemented in the SEED annotation environment to reconstruct the chitin and GlcNAc utilization subsystem and regulatory network in most proteobacteria, including 11 species of Shewanella with completely sequenced genomes. Comparative analysis of candidate regulatory sites allowed us to characterize three different GlcNAc-specific regulons, NagC, NagR, and NagQ, in various proteobacteria and to tentatively assign a number of novel genes with specific functional roles, in particular new GlcNAc-related transport systems, to this subsystem. Genes SO3506 and SO3507, originally annotated as hypothetical in Shewanella oneidensis MR-1, were suggested to encode novel variants of GlcN-6-P deaminase and GlcNAc kinase, respectively. Reconstitution of the GlcNAc catabolic pathway in vitro using these purified recombinant proteins and GlcNAc-6-P deacetylase (SO3505) validated the entire pathway. Kinetic characterization of GlcN-6-P deaminase demonstrated that it is the subject of allosteric activation by GlcNAc-6-P. Consistent with genomic data, all tested Shewanella strains except S. frigidimarina, which lacked representative genes for the GlcNAc metabolism, were capable of utilizing GlcNAc as the sole source of carbon and energy. This study expands the range of carbon substrates utilized by Shewanella spp., unambiguously identifies several genes involved in chitin metabolism, and describes a novel variant of the classical three-step biochemical conversion of GlcNAc to fructose 6-phosphate first described in Escherichia coli.  相似文献   

11.
N-Linked glycosylation is a post-translational modification occurring in many eukaryotic secreted and surface-bound proteins and has impact on diverse physiological and pathological processes. Similarly important is the generation of glycosylphosphatidylinositol linkers, which anchor membrane proteins to the cell. Both protein modifications depend on the central nucleotide sugar UDP-N-acetylglucosamine (UDP-GlcNAc). The enzymatic reactions leading to generation of nucleotide sugars are established, yet most of the respective genes still await cloning. We describe the characterization of such a gene, EMeg32, which we identified based on its differential expression in murine hematopoietic precursor cells. We further demonstrate regulated expression during embryogenesis. EMeg32 codes for a 184-amino acid protein exhibiting glucosamine-6-phosphate acetyltransferase activity. It thereby holds a key position in the pathway toward de novo UDP-GlcNAc synthesis. Surprisingly, the protein associates with the cytoplasmic side of various intracellular membranes, accumulates prior to mitosis, and copurifies with the cdc48 homolog p97/valosin-containing protein.  相似文献   

12.
Glucosamine-6-phosphate (GlcN-6-P) synthase catalyses the first and practically irreversible step in hexosamine metabolism. The final product of this pathway, uridine 5’ diphospho N-acetyl-D-glucosamine (UDP-GlcNAc), is an essential substrate for assembly of bacterial and fungal cell walls. Moreover, the enzyme is involved in phenomenon of hexosamine induced insulin resistance in type II diabetes, which makes it a potential target for antifungal, antibacterial and antidiabetic therapy. The crystal structure of the isomerase domain of GlcN-6-P synthase from human pathogenic fungus Candida albicans, in complex with UDP-GlcNAc has been solved recently but it has not revealed the molecular mechanism of inhibition taking place under UDP-GlcNAc influence, the unique feature of the eukaryotic enzyme. UDP-GlcNAc is a physiological inhibitor of GlcN-6-P synthase, binding about 1 nm away from the active site of the enzyme. In the present work, comparative molecular dynamics simulations of the free and UDP-GlcNAc-bounded structures of GlcN-6-P synthase have been performed. The aim was to complete static X-ray structural data and detect possible changes in the dynamics of the two structures. Results of the simulation studies demonstrated higher mobility of the free structure when compared to the liganded one. Several amino acid residues were identified, flexibility of which is strongly affected upon UDP-GlcNAc binding. Importantly, the most fixed residues are those related to the inhibitor binding process and to the catalytic reaction. The obtained results constitute an important step toward understanding of mechanism of GlcN-6-P synthase inhibition by UDP-GlcNAc molecule.  相似文献   

13.
The GlcNAc-1-P transferase was solubilized from pig aorta microsomal fractions using 0.5% Nonidet P-40. The activity of the solubilized enzyme was stimulated by exogeneously added phospholipids in the order phosphatidylglycerol greater than phosphatidylinositol greater than phosphatidylserine. When the enzyme was stored in 20% glycerol containing 20 micrograms of phosphatidylglycerol/mg of protein, more than 80% of the activity remained after storage for 6 days at 0-4 degrees C. On the other hand, in the absence of the stabilizers, the enzyme lost most of its activity within 24 h. The transferase was purified about 68-fold using ammonium sulfate and DEAE-cellulose fractionation. The DEAE-cellulose chromatography separated a heat-stable factor from the enzyme, which when added back to the partially purified enzyme stimulated about 5-fold. With this partially purified enzyme, the Km for UDP-GlcNAc was found to be 1 X 10(-7) M, and that for dolichyl-P about 1 X 10(-6) M. The stimulatory factor increased the Vmax for both UDP-GlcNAc and dolichyl-P 5-10-fold, but the Km values remained the same. The pH optimum for the enzyme was between 7.4 and 7.6, and either Mn2+ (1 mM) or Mg2+ (10 mM) was required for optimum activity. The GlcNAc-1-P transferase was also stimulated by the addition of GDP-mannose (or other purine sugar nucleotides) or dolichyl-phosphoryl-mannose to the incubation mixtures. These two compounds acted in different ways on the enzyme since their stimulatory effects were additive. The effect of GDP-mannose was found to be due to protection of the substrate, UDP-GlcNAc, from degradation, but the effect of dolichyl-P-mannose remains to be established. In addition, the stimulations shown by phosphatidylglycerol, GDP-mannose, and factor, or phosphatidylglycerol, dolichyl-P-mannose, and factor, were all additive, indicating that they were acting at different sites on the enzyme. The transferase was quite sensitive to the action of sulfhydryl reagents such as N-ethylmaleimide or p-chloromercuribenzene sulfonate, and was rapidly inactivated in their presence. The enzyme could be protected to the extent of about 50% when all of the substrates (UDP-GlcNAc, dolichyl-P, Mn2+) were added before the addition of the sulfhydryl reagents.  相似文献   

14.
Glutamine-fructose-6-phosphate amidotransferase (GFAT) catalyzes the first committed step in the pathway for biosynthesis of hexosamines in mammals. A member of the N-terminal nucleophile class of amidotransferases, GFAT transfers the amino group from the L-glutamine amide to D-fructose 6-phosphate, producing glutamic acid and glucosamine 6-phosphate. The kinetic constants reported previously for mammalian GFAT implicate a relatively low affinity for the acceptor substrate, fructose 6-phosphate (Fru-6-P, K(m) 0.2-1 mm). Utilizing a new sensitive assay that measures the production of glucosamine 6-phosphate (GlcN-6-P), purified recombinant human GFAT1 (hGFAT1) exhibited a K(m) for Fru-6-P of 7 microm, and was highly sensitive to product inhibition by GlcN-6-P. In a second assay method that measures the stimulation of glutaminase activity, a K(d) of 2 microm was measured for Fru-6-P binding to hGFAT1. Further, we report that the product, GlcN-6-P, is a potent competitive inhibitor for the Fru-6-P site, with a K(i) measured of 6 microm. Unlike other members of the amidotransferase family, where glutamate production is loosely coupled to amide transfer, we have demonstrated that hGFAT1 production of glutamate and GlcN-6-P are strictly coupled in the absence of inhibitors. Similar to other amidotransferases, competitive inhibitors that bind at the synthase site may inhibit the synthase activity without inhibiting the glutaminase activity at the hydrolase domain. GlcN-6-P, for example, inhibited the transfer reaction while fully activating the glutaminase activity at the hydrolase domain. Inhibition of hGFAT1 by the end product of the pathway, UDP-GlcNAc, was competitive with a K(i) of 4 microm. These data suggest that hGFAT1 is fully active at physiological levels of Fru-6-P and may be regulated by its product GlcN-6-P in addition to the pathway end product, UDP-GlcNAc.  相似文献   

15.
A new procedure for quantitating the amount of N-acetyl-D-mannosamine (ManNAc) or ManNAc-6-phosphate produced by 2'-epimerase activities involved in sialic acid metabolism has been developed. The ManNAc generated by the action of N-acetyl-D-glucosamine (GlcNAc) and UDP-GlcNAc 2'-epimerases is condensed with pyruvate through the action of N-acetylneuraminate lyase and the sialic acid released is measured by the thiobarbituric acid assay. For the analysis of prokaryotic GlcNAc-6-phosphate 2'-epimerase, ManNAc-6-phosphate can also be evaluated by this coupled assay after dephosphorylation of the sugar phosphate. This system provides a sensitive, rapid, reproducible, specific and simple procedure (feasible with commercial reagents) for measuring amino sugar 2'-epimerases from eukaryotic and prokaryotic sources. The technique reported here permitted us to detect UDP-GlcNAc 2'-epimerase and GlcNAc 2'-epimerase in mammalian cell extracts and GlcNAc-6-phosphate 2'-epimerase in bacterial extracts.  相似文献   

16.
Gao N  Shang J  Lehrman MA 《Glycobiology》2008,18(1):125-134
GlcNAc-1-P transferase (GPT) transfers GlcNAc-1-P from UDP-GlcNAc to dolichol-P (Dol-P), forming GlcNAc-P-PDol to initiate synthesis of the lipid-linked oligosaccharide Glc3Man9GlcNAc2-P-P-dolichol (G3M9Gn2-P-P-Dol). Elevated expression of GPT in CHO-K1 cells is known to cause accumulation of the intermediate M5Gn2-P-P-Dol, presumably by excessively consuming Dol-P and thereby hindering Dol-P-dependent synthesis of Man-P-Dol (MPD) and Glc-P-Dol (GPD), which provide the residues for extending M5Gn2-P-P-Dol to G3M9Gn2-P-P-Dol. If so, elevated GPT expression should increase oligosaccharide-P-P-Dol quantities and reduce monosaccharide-P-Dol quantities, while requiring GPT enzymatic activity. Here we report that elevated GPT expression failed to appreciably alter the quantities of the two classes of dolichol-linked saccharide, and that neither a GPT inhibitor nor introduction of an inactivating mutation into GPT prevented M5Gn2-P-P-Dol accumulation,arguing against excessive Dol-P consumption. Unexpectedly,we noticed similarities between the phenotypes of GPT overexpressers and of CHO-K1 cells lacking Lec35p (encoded by MPDU1, the congenital disorder of glycosylation(CDG)-If locus), which is required for utilization of MPD and GPD. By compensatory overexpression of Lec35p, G3M9Gn2-P-P-Dol synthesis in GPT overexpressers could be restored. However, GPT overexpression did not affect the levels of Lec35 mRNA or protein. These results suggest that GPT may impair Lec35p function, and imply that upper as well as lower limits on GPT expression exist in normal cells. Since the mammalian GPT gene can undergo spontaneous amplification, the data also indicate a potential basis for forms of pseudo-CDG-If.  相似文献   

17.
N-acetyl-D-glucosamine (GlcNAc) is a major component of bacterial cell wall murein and the lipopolysaccharide of the outer membrane. During growth, over 60% of the murein of the side wall is degraded, and the major products, GlcNAc-anhydro-N-acetylmuramyl peptides, are efficiently imported into the cytoplasm and cleaved to release GlcNAc, anhydro-N-acetylmuramic acid, murein tripeptide (L-Ala-D-Glu-meso-diaminopimelic acid), and D-alanine. Like murein tripeptide, GlcNAc is readily recycled, and this process was thought to involve phosphorylation, since GlcNAc-6-phosphate (GlcNAc-6-P) is efficiently used to synthesize murein or lipopolysaccharide or can be metabolized by glycolysis. Since the gene for GlcNAc kinase had not been identified, in this work we purified GlcNAc kinase (NagK) from Escherichia coli cell extracts and identified the gene by determining the N-terminal sequence of the purified kinase. A nagK deletion mutant lacked phosphorylated GlcNAc in its cytoplasm, and the cell extract of the mutant did not phosphorylate GlcNAc, indicating that NagK is the only GlcNAc kinase expressed in E. coli. Unexpectedly, GlcNAc did not accumulate in a nagK nagEBACD mutant, though both GlcNAc and GlcNAc-6-P accumulate in the nagEBACD mutant, suggesting the existence of an alternative pathway (presumably repressed by GlcNAc-6-P) that reutilizes GlcNAc without the involvement of NagK.  相似文献   

18.
Giardia intestinalis trophozoites encyst when they are exposed to bile. During encystment, events related to the inducible synthesis of a novel N-acetyl-D-galactosamine (GalNAc) homopolymer, occur. Within the first 6 h of encystment, mRNA for glucosamine 6-P isomerase (GPI), the first inducible enzyme unique to this pathway appears, oxygen uptake rates double from non-encysting levels, and metronidazole (MTZ) inhibits oxygen uptake. Within 12 h, GPI and its activity are detectable and OU decreases 50% from non-encysting levels; glucose's stimulation and MTZ's inhibition of oxygen uptake cease. In contrast, aspartate uptake remained constant throughout the 40 h monitored. Two genes, gpi 1 and 2 encode for GPI, but only gpi1 is expressed during encystment. Glucosamine 6-P (GlcN6P), the synthetic product of GPI, activates UDP-N-acetylglucosamine (UDP-GlcNAc) pyrophosphorylase, a downstream enzyme, 3 to 5-fold in the direction of UDP-GlcNAc synthesis. UDP-GlcNAc is epimerized to UDP-GalNAc and UDP-GalNAc is polymerized by "cyst wall synthase" (beta 1 --> 3 GalNAc transferase) into a highly insoluble beta 1,3-linked homopolymer. This GalNAc polysaccharide, the major component of cyst wall filaments, forms, in conjunction with polypeptides, the outer cyst wall of Giardia.  相似文献   

19.
Isono T 《PloS one》2011,6(4):e18959
Modification of serine and threonine residues in proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation is a feature of many cellular responses to the nutritional state and to stress. O-GlcNAc modification is reversibly regulated by O-linked β-N-acetylglucosamine transferase (OGT) and β-D-N-acetylglucosaminase (O-GlcNAcase). O-GlcNAc modification of proteins is dependent on the concentration of uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc), which is a substrate of OGT and is synthesized via the hexosamine biosynthetic pathway. Immunoblot analysis using the O-GlcNAc-specific antibody CTD110.6 has indicated that glucose deprivation increases protein O-GlcNAcylation in some cancer cells. The mechanism of this paradoxical phenomenon has remained unclear. Here we show that the increased glycosylation induced by glucose deprivation and detected by CTD110.6 antibodies is actually modification by N-GlcNAc(2), rather than by O-GlcNAc. We found that this induced glycosylation was not regulated by OGT and O-GlcNAcase, unlike typical O-GlcNAcylation, and it was inhibited by treatment with tunicamycin, an N-glycosylation inhibitor. Proteomics analysis showed that proteins modified by this induced glycosylation were N-GlcNAc(2)-modified glycoproteins. Furthermore, CTD110.6 antibodies reacted with N-GlcNAc(2)-modified glycoproteins produced by a yeast strain with a ts-mutant of ALG1 that could not add a mannose residue to dolichol-PP-GlcNAc(2). Our results demonstrated that N-GlcNAc(2)-modified glycoproteins were induced under glucose deprivation and that they cross-reacted with the O-GlcNAc-specific antibody CTD110.6. We therefore propose that the glycosylation status of proteins previously classified as O-GlcNAc-modified proteins according to their reactivity with CTD110.6 antibodies must be re-examined. We also suggest that the repression of mature N-linked glycoproteins due to increased levels of N-GlcNAc(2)-modified proteins is a newly recognized pathway for effective use of sugar under stress and deprivation conditions. Further research is needed to clarify the physiological and pathological roles of N-GlcNAc(2)-modified proteins.  相似文献   

20.
Chemotaxis of the marine bacterium Vibrio furnissii to chitin oligosaccharides has been described (Bassler, B. L., Gibbons, P. J., Yu, C., and Roseman, S. (1991) J. Biol. Chem. 266, 24268-24275). Some steps in catabolism of the oligosaccharides are reported here. GlcNAc, (GlcNAc)2, and (GlcNAc)3 are very rapidly consumed by intact cells, about 320 nmol of GlcNAc equivalents/min/mg of protein. (GlcNAc)4 is utilized somewhat more slowly. During these processes, there is virtually no release of hydrolysis products by the cells. The oligosaccharides enter the periplasmic space (via specific porins?) and are hydrolyzed by a unique membrane-bound endoenzyme (chitodextrinase) and an exoenzyme (N-acetyl-beta-glucosaminidase; beta-Glc-NAcidase). The genes encoding these enzymes have been cloned and expressed in Escherichia coli. The chitodextrinase cleaves soluble oligomers, but not chitin, to the di- and trisaccharides, while the periplasmic beta-GlcNAcidase hydrolyzes the GlcNAc termini from the oligomers. The end products in the periplasm, GlcNAc and (GlcNAc)2 (possibly (GlcNAc)3) are catabolized as follows. (a) Disaccharide pathway, A (GlcNAc)2 permease is apparently expressed by Vibrio furnissii. Translocated (GlcNAc)2 is rapidly hydrolyzed by a soluble, cytosolic beta-GlcNAcidase, and the GlcNAc is phosphorylated by an ATP-dependent, constitutive kinase to GlcNAc-6-P. (b) Monosaccharide pathway, Periplasmic GlcNAc is taken up by Enzyme IINag of the phosphoenolpyruvate:glycose phosphotransferase system, yielding GlcNAc-6-P, the common intermediate for both pathways. Finally, GlcNAc-6-P----Ac- + GlcNH2-6-P----Fru-6-P + NH3. (GlcNAc)2 is probably the "true" inducer of the chitin degradative enzymes described in this report and, depending on its concentration in the growth medium, differentially induces the periplasmic and cytosolic beta-GlcNAcidases. The disaccharide pathway appears to be the most important when the cells are confronted with low concentrations of the oligomers (e.g. in chemotaxis swarm plates). The relative activities of the induced enzymes suggest that the rate-limiting steps in oligosaccharide catabolism are the glycosidase activities in the periplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号