首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosynthesis of pyrimidine components in rat liver varies with the time of the day. The concentrations of both the cytidine and the uridine components of the acid-soluble extract are lowest in the morning hours and highest around midnight. The utilization of [2-14C]orotic acid for the synthesis of the pyrimidine components of the acid-soluble extract, RNA, and DNA has a similar character. Analogous changes also are seen in the uptake of [U-14C]cytidine and its utilization for the synthesis of RNA cytosine.  相似文献   

2.
Uridine and cytidine are major nucleosides and are produced as catabolites of pyrimidine nucleotides. To study the metabolic fates and role of these nucleosides in plants, we have performed pulse (2 h) and chase (12 h) experiments with [2-14C]uridine and [2-14C]cytidine and determined the activities of some related enzymes using tubers and fully expanded leaves from 10-week-old potato plants ( Solanum tuberosum L.). In tubers, more than 94% of exogenously supplied [2-14C]uridine and [2-14C]cytidine was converted to pyrimidine nucleotides and RNA during 2-h pulse, and radioactivity in these salvage products still remained at 12 h after the chase. Little degradation of pyrimidine was found. A similar pyrimidine salvage was operative in leaves, although more than 20% of the radioactivity from [2-14C]uridine and [2-14C]cytidine was released as 14CO2 during the chase. Enzyme profile data show that uridine/cytidine kinase (EC 2.7.1.48) activity is higher in tubers than in leaves, but uridine nucleosidase (EC 3.2.2.3) activity was higher in leaves. In leaves, radioactivity from [U-14C]uracil was incorporated into β-ureidopropionic acid, CO2, β-alanine, pantothenic acid and several common amino acids. Our results suggest two functions of uridine and cytidine metabolism in leaves; these nucleosides are not only substrates for the classical pyrimidine salvage pathways but also starting materials for the biosynthesis of β-alanine. Subsequently, some β-alanine units are utilized for the synthesis of pantothenic acid in potato leaves.  相似文献   

3.
The treatment of rats by galactosamine (2 mmol/kg i.p.), which dramatically alters the metabolism of pyrimidine nucleotides in the liver, has been used to investigate the dynamics of pyrimidine nucleotides in the rat heart. Six hours after administration of the drug, the UTP and UDPG myocardial contents were decreased by respectively 40 and 52% while the sum of uracil nucleotides was increased by 66% and that of cytosine nucleotides by 15%. When administered 5 h after galactosamine treatment, cytidine (750 nmol/rat i.v.) induced a further increase in cytosine nucleotides (46% above control value 1 h later) without however effect on uracil nucleotides. On the other hand, the administration of uridine (250 nmol/rat, i.v. 5 h after galactosamine), while restoring UTP, UDPG and the pool of uracil nucleotides, provoked a decrease in cytosine nucleotide level (-17%). In the absence of galactosamine treatment, the administration of uridine and cytidine did not induce changes in nucleotide levels despite a rise in blood cytidine concentration. All these observations support the hypothesis that: 1. the pathway for cytosine nucleotide synthesis predominant in the heart is that utilizing preformed exogenous cytidine and 2. this pathway is mainly controlled by the intracellular concentration of UTP rather than that of CTP.  相似文献   

4.
Studies on ethionine-induced fatty liver   总被引:1,自引:0,他引:1       下载免费PDF全文
1. The effects of the administration of dl-ethionine on some aspects of lipid and nucleotide metabolism in rat liver were studied. 2. In ethionine-treated animals neutral fat was increased, whereas phospholipids and cholesterol were unchanged. Lipogenesis in vitro was inhibited. 3. The concentration of nicotinamide nucleotides, purine nucleotides and pyrimidine nucleotides was decreased. The decrease was due to free adenine nucleotides, inosine nucleotides, uridine nucleotides and cytidine nucleotides. Also, the protein-bound biotin content was lower. 4. In biotin-deficient rats the development of ethionine-induced fatty liver was inhibited. 5. The possibility was considered that ethionine might produce an inhibition of the synthesis of biotin-dependent acetyl-CoA carboxylase.  相似文献   

5.
These experiments were designed to determine through the study of uridine and cytidine kinase activity, the precise mechanisms of plasma nucleoside salvage leading to pyrimidine nucleotide synthesis in the rat heart. The kinetic parameters were: Km = 10 microM, V = 4 nmol g-1 min-1 for cytidine kinase activity and Km = 43 microM and V = 18 nmol g-1 min-1 for uridine kinase activity. Competing activity as concerns the two nucleosides was shown to occur, suggesting that in the rat myocardium as in other cells, one and the same enzyme phosphorylates both uridine and cytidine. UTP and CTP were shown to exert a potent inhibitory action on nucleoside phosphorylation; two factors thus exert a joint influence on the control of pyrimidine nucleotide synthesis in the rat heart: the extracellular concentration of precursor and the intracellular level of UTP and CTP. The kinetic parameters for kinase activities are discussed, taking into account the actual concentration of plasmatic nucleosides. Comparison of these data with respectively those for incorporation of nucleosides into the pyrimidine nucleotides of isolated rat heart and with nucleotide turnover rates in vivo suggests that, under physiological conditions, the utilization of plasma cytidine is crucial to the synthesis of myocardial pyrimidine synthesis.  相似文献   

6.
The biosynthesis of cytidine nucleotides and the level of microsomal cytochrome P-450 in intact and regenerating rat liver after repeated administration of alpha-hexachlorocyclohexane (alpha-HCH) were compared. In alpha-HCH treated animals the utilization of [2-14C] orotic acid for the synthesis of cytidine nucleotides is suppressed. In 24-h regenerating liver the incorporation of labelled orotic acid into cytidine nucleotides is markedly activated; the degree of activation is lower in regenerating livers of alpha-HCH treated animals. The changes in the level of cytochrome P-450 vary inversely with the changes in the utilization of [2-14C] orotic acid for the synthesis of cytidine nucleotides. The activity of cytidine triphosphate synthetase of liver cytosol increases shortly after the administration of alpha-HCH; uridine-cytidine kinase is enhanced in the later stages of the drug action. Within 15-45 min after the administration of alpha-HCH the uptake of [U-14 C] cytidine into the liver and its incorporation into RNA cytosine are increased. After the administration of the drug the uptake of [2-14 C] uridine and its incorporation into RNA uracil is also enhanced whereas its utilization for the synthesis of cytidine nucleotides of the acid-soluble extract as well as for the RNA cytosine are suppressed.  相似文献   

7.
Interaction between the de novo and salvage pathways of pyrimidine metabolism was studied in a line of rat hepatoma cells by co-labelling with [14C]-uridine and [3H]orotate. A difference in the ratio of 14C/3H between CTP and UTP in acid-soluble nucleotide pool was reflected in the corresponding ratios in CMP and UMP in RNA, with uridine labelling cytidine nucleotides relatively more effectively than orotate. These results are not compatible with the concept of a single UTP pool, and a new model for pyrimidine anabolic pathways, based on compartmentation of de novo from salvage pathways, is proposed.  相似文献   

8.
The major pathways of ribonucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides have been proposed from studies on its use of radioactive purines and pyrimidines. To interpret more fully the observed pattern of pyrimidine usage, cell extracts of this organism have been assayed for several enzymes associated with the salvage synthesis of pyrimidine nucleotides. M. mycoides possessed uracil phosphoribosyltransferase, uridine phosphorylase, uridine (cytidine) kinase, uridine 5'-monophosphate kinase, and cytidine 5'-triphosphate synthetase. No activity for phosphorolysis of cytidine was detected, and no in vitro conditions were found to give measurable deamination of cytidine. Of the two potential pathways for incorporation of uridine, our data suggest that this precursor would largely undergo initial phosphorolysis to uracil and ribose-1-phosphate. Conversely, cytidine is phosphorylated directly to cytidine 5'-monophosphate in its major utilization, although conversion of cytidine to uracil, uridine, and uridine nucleotide has been observed in vivo, at least when uracil is provided in the growth medium. Measurements of intracellular nucleotide contents and their changes on additions of pyrimidine precursors have allowed suggestions as to the operation of regulatory mechanisms on pyrimidine nucleotide biosynthesis in M. mycoides in vivo. With uracil alone or uracil plus uridine as precursors of pyrimidine ribonucleotides, the regulation of uracil phosphoribosyltransferase and cytidine 5'-triphosphate synthetase is probably most important in determining the rate of pyrimidine nucleotide synthesis. When cytidine supplements uracil in the growth medium, control of cytidine kinase activity would also be important in this regard.  相似文献   

9.
The degradation of RNA in the cyclically perfused rat liver was determined from the release of labeled cytidine from RNA that had been previously labeled with [6-14C]orotic acid in vivo. Because cytidine is not appreciably degraded in rat liver (its deamination to uridine is virtually nil) or produced in significant amounts from free 5'-nucleotides, its release will directly reflect net RNA breakdown. This conclusion was substantiated by the fact that the specific radioactivity of released cytidine equaled that of CMP in RNA and remained unchanged for 180 min of perfusion. The initial rate of [14C]cytidine accumulation was slow, but after 10-20 min it increased abruptly by more than 4-fold and remained virtually constant. The addition of 0.5 mM unlabeled cytidine effectively prevented the reutilization of label and increased the rate of labeled cytidine release by an amount representing 13% of the maximal rate of cytidine accumulation. Rates of RNA degradation, measured between 20 and 60 min in the presence of 0.5 mM unlabeled cytidine, averaged 1.00 +/- 0.05 mg h-1 liver-1 (100-g rat), the equivalent of 65% of total RNA per day. This accelerated value, which was about 4-fold larger than the initial rate, is believed to be the direct consequence of amino acid deprivation since, in separate experiments, the increase was completely suppressed by the addition of plasma amino acids (Lardeux, B. R., and Mortimore, G. E. (1987) J. Biol. Chem. 262, 14514-14519). These findings demonstrate the potential value of cytidine as a marker for following moment-to-moment regulatory alterations in RNA degradation in the isolated liver or hepatocyte preparation.  相似文献   

10.
[3H]uridine and [3H]orotic acid were equally utilized for labelling of RNA in mouse liver. Incorporation of [3H]cytidine was 2-3 times as high as that of [3H]-labelled uridine or orotic acid. These results differ from findings in rat liver, where both cytidine and orotic acid are better utilized for RNA labelling than is uridine. The ratio between liver RNA [3H]-activity and volatile [3H]-activity was 2, 3 and 13, respectively, at 300 min after injection of labelled uridine, orotic acid and cytidine, indicating an efficient chanelling of cytidine into liver anabolic pathways.  相似文献   

11.
Metabolism of cytidine and uridine in bean leaves   总被引:3,自引:3,他引:0       下载免费PDF全文
Ross C  Cole CV 《Plant physiology》1968,43(8):1227-1231
The metabolism of cytidine-2-14C and uridine-2-14C was studied in discs cut from leaflets of bean plants (Phaseolus vulgaris L.). Cytidine was degraded to carbon dioxide and incorporated into RNA at about the same rates as was uridine. Both nucleosides were converted into the same soluble nucleotides, principally uridine diphosphate glucose, suggesting that cytidine was rapidly deaminated to uridine and then metabolized along the same pathways. However, cytidine was converted to cytidine diphosphate and cytidine triphosphate more effectively than was uridine. Cytidine also was converted into cytidylic acid of RNA much more extensively and into RNA uridylic acid less extensively than was uridine. Azaserine, an antagonist of reactions involving glutamine (including the conversion of uridine triphosphate to cytidine triphosphate), inhibited the conversion of cytidine into RNA uridylic acid with less effect on its incorporation into cytidylic acid. On the other hand, it inhibited the conversion of orotic acid into RNA cytidylic acid much more than into uridylic acid. The results suggest that cytidine is in part metabolized by direct conversion to uridine and in part by conversion to cytidine triphosphate through reactions not involving uridine nucleotides.  相似文献   

12.
Pretreatment of confluent cultures of mouse L cells or of well-differentiated nervous system cells in primary cultures with 20–120 mM glucosamine resulted in a stimulation of the uptake of tritiated uridine, but not of adenosine. A marked stimulation of the incorporation of radioactive uridine into acid-precipitable macromolecules was also obtained, while adenosine incorporation was unchanged. Cultures of L cells in log phase of growth were similarly affected by glucosamine pretreatment. Uridine and cytidine uptakes were stimulated by 50%. Tritiated uridine incorporation was stimulated in a biphasic manner, with maximal stimulation (115%) after 15–60 min of labeling and at later times an inhibition of incorporation. The stimulation of cytidine incorporation paralleled the stimulation of its uptake. The data indicate that there is: a) a glucosamine-induced stimulation of pyrimidine nucleoside uptake, b) a marked stimulation of tritiated uridine incorporation into RNA due to depletion of the cellular pools of unlabeled uridine nucleotides during glucosamine pre-treatment, and c) a decrease in the rate of RNA synthesis after several hours of glucosamine treatment, probably related to diminished intracellular supplies of uridine nucleotides. In the presence of glucosamine, high concentrations of actinomycin D could be used to increase nuclear retention of pulse-labeled nascent RNA. Cordycepin treatment did not result in similar retention of RNA. These techniques will be useful in autoradiographic and biochemical studies of nuclear RNA synthesis.  相似文献   

13.
Kinetic analyses of mRNA and 28-S RNA labeling [3H]uridine revealed distinctly different steady-state specific radioactivities finally reached for uridine in mRNA and 28-S RNA when exogenous [3H]uridine was kept constant for several cell doubling times. While the steady-state label of (total) UTP and of uridine in mRNA responded to the same extent to a suppression of pyrimidine synthesis de novo by high uridine concentrations in the culture medium, uridine in 28-S RNA was scarcely influenced. Similar findings were obtained with respect to labeling of cytidine in the various RNA species due to an equilibration of UTP with CTP [5-3H]Uridine is also incorporated into deoxycytidine of DNA, presumably via dCTP. The specific radioactivity of this nucleosidase attained the same steady-state value as UTP, uridine in mRNA and cytidine in mRNA. The data indicate the existence of two pyrimidine nucleotide pools. One is a large, general UTP pool comprising the bulk of the cellular UTP and serving nucleoplasmic nucleic acid formation (uridine and cytidine in mRNA, deoxycytidine in DNA). Its replenishment by de novo synthesis can be suppressed completely by exogenous uridine above 100 muM concentrations. A second, very small UTP (and CTP) pool with a high turnover provides most of the precursors for nucleolar RNA formation (rRNA). This pool is not subject to feedback inhibition by extracellular uridine to an appreciable extent. Determinations of (total) UTP turnover also show that the bulk of cellular RNA (rRNA) cannot be derived from the large UTP pool.  相似文献   

14.
Following the administration of D-galactosamine the utilization of [2-14C]orotic acid for the synthesis of the cytidine components of the acidsoluble extract and liver RNA cytosine is markedly decreased. The depression of the specific activity of the cytidine components takes place after application of low doses of the drug which do not interfere with the specific activity of the uridine components of the acid-soluble extract or of liver RNA uracil. Simultaneously the administration of [U-14C]cytidine paralleled by its enhanced liver uptake. The total amount of uridine as well as cytidine components of the acid-soluble extract following the administration of D-galactosamine increases; however, the molar ratio of both pyrimidines does not change. The alterations of the cytidine metabolism after the administration of the drug are accompanied by the increased level of microsomal cytochrome P-450.  相似文献   

15.
Dillerent chicken tissues are shown to display a clearly pronounced specificity relative to [2-14C] orotic acid and [5-3H]uridine as precursors of synthesis of the pool and RNA pyrimidine nucleotides. The fraction of pyrimidine nucleotides synthetized relative to the reserve pathway (uridine utilization) decreases in the series: kidneys greater than duodenum mucosa greater than lungs greater than liver greater than pancreas greater than bone marrow greater than brain greater than spleen. The results of [2-14C]orotic acid and [53H]uridine incorporation into UMP and CMP of the liver and spleen tissues RNA are interpreted in terms of the concept on existence of separate pools of pyrimidine phosphates--RNA precursors.  相似文献   

16.
The nucleoside triphosphate pools of two cytidine auxotrophic mutants of Salmonella typhimurium LT-2 were studied under different conditions of pyrimidine starvation. Both mutants, DP-45 and DP-55, are defective in cytidine deaminase and cytidine triphosphate (CTP) synthase. In addition, DP-55 has a requirement for uracil (uridine). Cytidine starvation of the mutants results in accumulation of high concentrations of uridine triphosphate (UTP) in the cells, while the pools of CTP and deoxy-CTP drop to undetectable levels within a few minutes. Addition of deoxycytidine to such cells does not restore the dCTP pool, indicating that S. typhimurium has no deoxycytidine kinase. From the kinetics of UTP accumulation during cytidine starvation, it is concluded that only cytidine nucleotides participate in the feedback regulation of de novo synthesis of UTP; both uridine and cytidine nucleotides participate in the regulation of UTP synthesis from exogenously supplied uracil or uridine. Uracil starvation of DP-55 in presence of cytidine results in extensive accumulation of CTP, suggesting that CTP does not regulate its own synthesis from exogenous cytidine. Analysis of the thymidine triphosphate (dTTP) pool of DP-55 labeled for several generations with (32)P-orthophosphate and (3)H-uracil in presence of (12)C-cytidine shows that only 20% of the dTTP pool is derived from uracil (via the methylation of deoxyuridine monophosphate); 80% is apparently synthesized from a cytidine nucleotide.  相似文献   

17.
Pyrimidine Salvage Pathways In Toxoplasma Gondii   总被引:1,自引:0,他引:1  
ABSTRACT. Pyrimidine salvage enzyme activities in cell-free extracts of Toxoplasma gondii were assayed in order to determine which of these enzyme activities are present in these parasites. Enzyme activities that were detected included phosphoribosyltransferase activity towards uracil (but not cytosine or thymine), nucleoside phosphorylase activity towards uridine, deoxyuridine and thymidine (but not cytidine or deoxycytidine), deaminase activity towards cytidine and deoxycytidine (but not cytosine, cytidine 5'-monophosphate or deoxycytidine 5'-monophosphate), and nucleoside 5'-monophosphate phosphohydrolase activity towards all nucleotides tested. No nucleoside kinase or phosphotransferase activity was detected, indicating that T. gondii lack the ability to directly phosphorylate nucleosides. Toxoplasma gondii appear to have a single non-specific uridine phosphorylase enzyme which can catalyze the reversible phosphorolysis of uridine, deoxyuridine and thymidine, and a single cytidine deaminase activity which can deaminate both cytidine and deoxycytidine. These results indicate that pyrimidine salvage in T. gondii probably occurs via the following reactions: cytidine and deoxycytidine are deaminated by cytidine deaminase to uridine and deoxyuridine, respectively; uridine and deoxyuridine are cleaved to uracil by uridine phosphorylase; and uracil is metabolized to uridine 5'-monophosphate by uracil phosphoribosyltransferase. Thus, uridine 5'-monophosphate is the end-product of both de novo pyrimidine biosynthesis and pyrimidine salvage in T. gondii.  相似文献   

18.
SYNOPSIS. Uniformly 14C-labeled pyrimidine ribonucleosides and orotic-6-14C acid were fed to growing cultures of Ochromonas malhamensis and the radioactivity appearing in RNA and DNA was determined. The carbon skeletons of uridine and cytidine were incorporated intact into all of the pyrimidine nucleotides from RNA and DNA. Incorporation of radioactivity into the purine nucleotides was negligible. The evidence supports the conclusion that deoxyribonucleotide biosynthesis in this organism proceeds via a pathway involving the direct reduction of the corresponding ribonucleosides or ribonucleotides. An important role for a trans-N-deoxyribosylase in deoxyribonucleotide biosynthesis here appears to be ruled out.  相似文献   

19.
The utilization of (2-14C)orotic acid for the synthesis of cytidine components of the acid-soluble extract and for the RNA cytosine is decreased in the liver of rats which fasted for 24 or 72 h. The depression of the specific activity of the cytidine components is greater in animals which received alpha-HCH during the 24-hour interval after removal of food than in the control group; by contrast, the specific activity of the cytidine components again increases in rats fasting for 72 h. Analogous changes also occurred in the specific activity of RNA cytosine. Both the (U-14C)cytidine uptake and its utilization for the synthesis of RNA cytosine are enhanced in fasting rats; the administration of alpha-HCH has a potentiating effect. The total content of cytidine components of the acidsoluble extract of 1 g of liver tissue is enhanced 24 h after the animals of the control and experimental group were deprived of food. There are no marked differences in the concentration of the uridine components. Fasting has an additive effect on the increase of cytochrome P-450 level in the alpha-HCH treated rats. Alpha-HCH = alpha-1,2,3,4,5,6-hexachlorocyclohexane.  相似文献   

20.
Phosphoglycolate phosphatase from human red blood cells   总被引:1,自引:0,他引:1  
The nucleotide profile of rat liver Golgi vesicles isolated using sucrose gradients has been determined by high-pressure liquid chromatography. The nucleotide composition of this Golgi preparation, probably modified by osmotic shock, differs from that of liver supernatant fraction and from isolated rough microsomes. The major nucleotides present in the Golgi have been tentatively identified as uridine diphosphate and a peak containing uridine monophosphate plus cytidine monophosphate at 1.6 and 0.5 nmol/mg protein, respectively. In order to minimize osmotic shock, we have modified the isolation of Golgi using D2O-sucrose gradients. Intact Golgi from these gradients were extracted directly and analyzed. Higher levels of nucleotides were found in the unshocked preparation, and the profile was also altered, although it was still distinct from that of liver supernatant. Four major peaks were found, tentatively identified as uridine monophosphate plus cytidine monophosphate, adenosine monophosphate, UDP, and uridine diphosphogalactose plus uridine diphosphoglucose, at 6.4, 6.4, 6.1, and 3.3 nmol/mg protein. These results indicate that the membrane of the Golgi apparatus is not freely permeable to nucleotides but that selective mechanisms exist for the uptake or exclusion of specific nucleotides from this organelle. The fact that UDP is selectively retained in shocked Golgi vesicles may indicate the presence of a binding protein which would prevent interference of Golgi function by UDP, a highly inhibitory product of galactosyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号