首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: To optimize ethidium monoazide (EMA) coupled with real‐time quantitative PCR (qPCR) and to evaluate its environmental applicability on quantifying viable legionellae in water and biofilm of cooling towers and hot water systems. Methods and Results: EMA (0·9–45·5 μg ml?1) and propidium monoazide (PMA, 0·9 and 2·3 μg ml?1) combined with qPCR (i.e. EMA‐qPCR and PMA‐qPCR, respectively) were applied to unheated and heated (70°C for 30 min) Legionella pneumophila to quantify viable cells, which was also simultaneously determined by BacLight Bacterial Viability kit with epifluorogenic microscopic enumeration (BacLight‐EM). The effects of nontarget microflora and sample matrix on the performance of EMA‐qPCR were also evaluated. In comparison with BacLight‐EM results, qPCR with EMA at 2·3 μg ml?1 was determined as the optimal EMA‐qPCR assay, which performed equally well as PMA‐qPCR for unheated Leg. pneumophila but better than PMA‐qPCR for heated Leg. pneumophila (P < 0·05). Moreover, qPCR with EMA at 2·3 μg ml?1 accurately quantified viable Leg. pneumophila, Legionella anisa and Legionella‐like amoebal pathogens 6 (LLAP 6) without interferences by heated legionellae, unheated nonlegionellae cells and cooling tower water matrix (P > 0·05). As for water and biofilm samples collected from cooling towers and hot water systems, the viable legionellae counts determined by EMA‐qPCR were mostly greater than the culturable counts by culture assay but consistently lower than the total cell counts quantified by qPCR. Conclusions: The qPCR with EMA at 2·3 μg ml?1 may accurately quantify viable legionellae (including fastidious LLAP 6) and Leg. pneumophila pretreated with superheating and is applicable for water and biofilm samples obtained from cooling towers and hot water systems. Significance and Impact of the Study: The EMA‐qPCR assay may be useful in environmental surveillance for viable legionellae and in evaluation of superheating efficacy against legionellae.  相似文献   

2.
In recent years, increasing numbers of human campylobacteriosis cases caused by contaminated water have been reported. As the culture-based detection of Campylobacter is time consuming and can yield false-negative results, the suitability of a quantitative real-time PCR method in combination with an ethidium monoazide pretreatment of samples (EMA-qPCR) for the rapid, quantitative detection of viable Campylobacter cells from water samples was investigated. EMA-qPCR has been shown to be a promising rapid method for the detection of viable Campylobacter spp. from food samples. Application of membrane filtration and centrifugation, two methods frequently used for the isolation of bacteria from water, revealed a mean loss of up to 1.08 log10 cells/ml from spiked samples. Both methods used alone lead to a loss of dead bacteria and accumulation of viable bacteria in the sample as shown by fluorescence microscopy. After filtration of samples, no significant differences could be detected in subsequent qPCR experiments with and without EMA pretreatment compared to culture-based enumeration. High correlations (R2 = 0.942 without EMA, R2 = 0.893 with EMA) were obtained. After centrifugation of samples, qPCR results overestimated Campylobacter counts, whereas results from both EMA-qPCR and the reference method were comparable. As up to 81.59% of nonviable cells were detected in pond water, EMA-qPCR failed to detect correct quantities of viable cells. However, analyses of spiked tap water samples revealed a high correlation (R2 = 0.863) between results from EMA-qPCR and the reference method. After membrane filtration, EMA-qPCR was successfully applied to Campylobacter field isolates, and results indicated an advantage over qPCR by analysing defined mixtures of viable and nonviable cells. In conclusion, EMA-qPCR is a suitable method to detect viable Campylobacter from water samples, but the isolation technique and the type/quality of the water sample impact the results.  相似文献   

3.
Ethidium monoazide bromide (EMA) treatment of pure culture and environmental waters at low concentrations (1.0–7.5 μg/ml) indicated effective enumeration of viable and viable but nonculturable Escherichia coli in pure cultures, creek waters, and secondary activated sludge effluent samples by quantitative polymerase chain reaction (qPCR) amplification of the uidA and fliC gene targets at turbidity values <10 NTU. However, EMA treatment was not effective in primary clarifier and secondary trickling filter effluents where turbidities were ≥10 NTU. In viable pure cultures, rapidly dividing and senescent cells were most affected by increasing EMA concentrations. Amplification of heat-killed pure bacterial cultures decreased 4 to 6 logs depending on EMA concentration and culture age. The greatest difference was observed in 5-h cultures using 7.5 μg/ml EMA. Turbidity (≥100 NTU) in environmental samples inhibited EMA effectiveness on viability discrimination. Enumeration of E. coli in certain wastewaters using EMA-qPCR was similar to culture suggesting that EMA treatment could be incorporated into qPCR assays for the quantification of viable bacteria increasing assay time no more than 30 min. Our results indicate that EMA can be used in routine qPCR assays, but optimum conditions for exposure must be identified for each sample type due to sample matrix effects such as turbidity.  相似文献   

4.
Legionella organisms are prevalent in manmade water systems and cause legionellosis in humans. A rapid detection method for viable Legionella cells combining ethidium monoazide (EMA) and PCR/real-time PCR was assessed. EMA could specifically intercalate and cleave the genomic DNA of heat- and chlorine-treated dead Legionella cells. The EMA-PCR assay clearly showed an amplified fragment specific for Legionella DNA from viable cells, but it could not do so for DNA from dead cells. The number of EMA-treated dead Legionella cells estimated by real-time PCR exhibited a 104- to 105-fold decrease compared to the number of dead Legionella cells without EMA treatment. Conversely, no significant difference in the numbers of EMA-treated and untreated viable Legionella cells was detected by the real-time PCR assay. The combined assay was also confirmed to be useful for specific detection of culturable Legionella cells from water samples obtained from spas. Therefore, the combined use of EMA and PCR/real-time PCR detects viable Legionella cells rapidly and specifically and may be useful in environmental surveillance for Legionella.  相似文献   

5.
Aims: To perform an international trial to derive alert and action levels for the use of quantitative PCR (qPCR) in the monitoring of Legionella to determine the effectiveness of control measures against legionellae. Methods and Results: Laboratories (7) participated from six countries. Legionellae were determined by culture and qPCR methods with comparable detection limits. Systems were monitored over ≥10 weeks. For cooling towers (232 samples), there was a significant difference between the log mean difference between qPCR (GU l?1) and culture (CFU l?1) for Legionella pneumophila (0·71) and for Legionella spp. (2·03). In hot and cold water (506 samples), the differences were less, 0·62 for Leg. pneumophila and 1·05 for Legionella spp. Results for individual systems depended on the nature of the system and its treatment. In cooling towers, Legionella spp. GU l?1 always exceeded CFU l?1, and usually Legionella spp. were detected by qPCR when absent by culture. The pattern of results by qPCR for Leg. pneumophila followed the culture trend. In hot and cold water, culture and qPCR gave similar results, particularly for Leg. pneumophila. There were some marked exceptions with temperatures ≥50°C, or in the presence of supplementary biocides. Action and alert levels for qPCR were derived that gave results comparable to the application of the European Guidelines based on culture. Algorithms are proposed for the use of qPCR for routine monitoring. Conclusions: Action and alert levels for qPCR can be adjusted to ensure public health is protected with the benefit that remedial actions can be validated earlier with only a small increase in the frequency of action being required. Significance and Impact of the Study: This study confirms it is possible to derive guidelines on the use of qPCR for monitoring the control of legionellae with consequent improvement to response and public health protection.  相似文献   

6.
One of the greatest challenges of implementing fast molecular detection methods as part of Legionella surveillance systems is to limit detection to live cells. In this work, a protocol for sample treatment with propidium monoazide (PMA) in combination with quantitative PCR (qPCR) has been optimized and validated for L. pneumophila as an alternative of the currently used time-consuming culture method. Results from PMA-qPCR were compared with culture isolation and traditional qPCR. Under the conditions used, sample treatment with 50 μM PMA followed by 5 min of light exposure were assumed optimal resulting in an average reduction of 4.45 log units of the qPCR signal from heat-killed cells. When applied to environmental samples (including water from cooling water towers, hospitals, spas, hot water systems in hotels, and tap water), different degrees of correlations between the three methods were obtained which might be explained by different matrix properties, but also varying degrees of non-culturable cells. It was furthermore shown that PMA displayed substantially lower cytotoxicity with Legionella than the alternative dye ethidium monoazide (EMA) when exposing live cells to the dye followed by plate counting. This result confirmed the findings with other species that PMA is less membrane-permeant and more selective for the intact cells. In conclusion, PMA-qPCR is a promising technique for limiting detection to intact cells and makes Legionella surveillance data substantially more relevant in comparison with qPCR alone. For future research it would be desirable to increase the method's capacity to exclude signals from dead cells in difficult matrices or samples containing high numbers of dead cells.  相似文献   

7.
基于EMA-qPCR的茄科青枯菌活体检测技术的建立   总被引:1,自引:0,他引:1  
【目的】利用特异性核酸染料叠氮溴乙锭(Ethidium monoazide bromide, EMA)与实时荧光定量PCR技术相结合, 建立一种能有效区分青枯菌死活细胞的检测方法。【方法】样品DNA制备前经EMA渗透预处理, 再进行实时荧光定量PCR特异扩增菌体DNA。【结果】终浓度为2.0 mg/L的EMA能有效排除1.0×107 CFU/mL灭活青枯菌细胞DNA的扩增, 对活细胞和不可培养状态(Viable but non-culturable, VBNC)活菌的DNA扩增均没有影响。当每个定量PCR反应体系中的活细胞在5.0×100?5.0×104 CFU范围内时, 扩增Ct值与定量PCR反应体系中活细胞CFU对数值呈良好的负相关性(R2=0.992 5)。比较EMA-qPCR法和平板计数法对经过不同温度短期保存的青枯菌检测结果发现, 待检样品可在24 °C与4 °C冷藏条件下短期保存。【结论】本研究建立的EMA-qPCR方法能有效检测青枯菌VBNC细胞和有效区分死活菌, 避免或减少青枯菌PCR检测的假阳性和假阴性。  相似文献   

8.
The lack of differentiation between viable and nonviable bacterial cells limits the implementation of PCR-based methods for routine diagnostic approaches. Recently, the combination of a quantitative real-time PCR (qPCR) and ethidium monoazide (EMA) or propidium monoazide (PMA) pretreatment has been described to circumvent this disadvantage. In regard to the suitability of this approach for Campylobacter spp., conflicting results have been reported. Thus, we compared the suitabilities of EMA and PMA in various concentrations for a Campylobacter viability qPCR method. The presence of either intercalating dye, EMA or PMA, leads to concentration-dependent shifts toward higher threshold cycle (CT) values, especially after EMA treatment. However, regression analysis resulted in high correlation coefficient (R2) values of 0.99 (EMA) and 0.98 (PMA) between Campylobacter counts determined by qPCR and culture-based enumeration. EMA (10 μg/ml) and PMA (51.10 μg/ml) removed DNA selectively from nonviable cells in mixed samples at viable/nonviable ratios of up to 1:1,000. The optimized EMA protocol was successfully applied to 16 Campylobacter jejuni and Campylobacter coli field isolates from poultry and indicated the applicability for field isolates as well. EMA-qPCR and culture-based enumeration of Campylobacter spiked chicken leg quarters resulted in comparable bacterial cell counts. The correlation coefficient between the two analytical methods was 0.95. Nevertheless, larger amounts of nonviable cells (>104) resulted in an incomplete qPCR signal reduction, representing a serious methodological limitation, but double staining with EMA considerably improved the signal inhibition. Hence, the proposed Campylobacter viability EMA-qPCR provides a promising rapid method for diagnostic applications, but further research is needed to circumvent the limitation.  相似文献   

9.
PCR-based methods have been developed to rapidly screen for Legionella pneumophila in water as an alternative to time-consuming culture techniques. However, these methods fail to discriminate between live and dead bacteria. Here, we report a viability assay (viability PCR [v-PCR]) for L. pneumophila that combines ethidium monoazide bromide with quantitative real-time PCR (qPCR). The ability of v-PCR to differentiate viable from nonviable L. pneumophila cells was confirmed with permeabilizing agents, toluene, or isopropanol. v-PCR suppressed more than 99.9% of the L. pneumophila PCR signal in nonviable cultures and was able to discriminate viable cells in mixed samples. A wide range of physiological states, from culturable to dead cells, was observed with 64 domestic hot-water samples after simultaneous quantification of L. pneumophila cells by v-PCR, conventional qPCR, and culture methods. v-PCR counts were equal to or higher than those obtained by culture and lower than or equal to conventional qPCR counts. v-PCR was used to successfully monitor in vitro the disinfection efficacy of heating to 70°C and glutaraldehyde and chlorine curative treatments. The v-PCR method appears to be a promising and rapid technique for enumerating L. pneumophila bacteria in water and, in comparison with conventional qPCR techniques used to monitor Legionella, has the advantage of selectively amplifying only viable cells.Legionella organisms are ubiquitous bacteria found in many types of water sources in the environment. Their growth is especially favored in human-made warm water systems, including cooling towers, hot tubs, showerheads, and spas (3, 14, 15, 38). Legionella bacteria replicate as intracellular parasites of amoebae and persist in the environment as free-living microbes or in biofilms. In aerosol form, they enter the lungs and can cause an acute form of pneumonia known as Legionnaires'' disease or a milder form of pulmonary infection called Pontiac fever. The species Legionella pneumophila is responsible for the vast majority of the most severe form of this atypical pneumonia (52, 70). Legionellosis outbreaks are associated with high mortality rates (15 to 20%) (15, 16, 38, 46), which can reach up to 50% for people with weakened immune systems (immunocompromised patients) (69). Legionella surveillance programs include regular monitoring of environmental water samples (9, 13, 66). It is generally acknowledged that Legionella represents a health risk to humans when cell densities are greater than 104 to 105 CFU per liter of water, and epidemiological data show that outbreaks of legionellosis occur at these concentrations (36, 47).The evaluation of the risk associated with Legionella has traditionally been performed using culture-based methods (1, 24). Culture is essential for identifying and typing Legionella strains during epidemics. However, Legionella culture requires long incubation times (up to 10 days) before results can be scored. This problem makes culture unsuitable for preventive actions and rapid response in emergency situations. Moreover, under certain conditions (i.e., low-nutrient environments, oxidative or osmotic stress, etc.), Legionella cells can lose the ability to be cultured, although they are still viable (7, 17, 20, 22, 39, 45, 67). These viable but nonculturable (VBNC) Legionella cells may still represent a public health hazard because they can regain their ability to grow in new, more favorable conditions (12, 19, 23, 61).Molecular approaches, such as quantitative real-time PCR (qPCR), are faster and can mitigate the main drawbacks of culture-based methods. qPCR is an alternative tool that offers rapid, sensitive, and specific detection of Legionella bacteria in environmental water samples (4, 5, 12, 26, 65, 68). PCR results can be obtained in hours instead of days, and VBNC Legionella cells can also be detected (12, 26). However, the major disadvantage of qPCR lies in its inability to evaluate viability due to the persistence of DNA in cells after death (27, 34). The monitoring of Legionella contamination levels by conventional qPCR may thus result in an overestimation of the risk of infection because false-positive results can be scored. However, the real risk from Legionella is limited to the live fraction of the total Legionella population. Only live or viable Legionella cells are able to replicate in pulmonary macrophages and cause severe pneumonia (14, 15). The development of more rapid, culture-independent methods capable of discriminating between live and dead cells is of major interest for measuring Legionella infection risks and preventing legionellosis. The nucleic acid-binding dye ethidium monoazide bromide (EMA), used in combination with qPCR, is an attractive alternative for selectively detecting and enumerating viable bacteria. EMA is particularly useful because it selectively penetrates cells with damaged membranes and covalently binds to DNA after photoactivation (21, 53). DNA-bound EMA molecules prevent PCR amplification and thereby lead to a strong signal reduction during qPCR. DNA from viable cells with intact cell membranes prevents EMA molecules from entering the cell and therefore can be amplified and quantified (56). Nocker et al. (41, 42) suggested that the signal reduction was due to a selective loss of genomic DNA from dead cells (rendered insoluble after cross-linkage) during the DNA extraction procedure rather than to PCR inhibition. However, Soejima et al. (59, 60) recently reported that treatment with EMA followed by visible light irradiation directly cleaves the chromosomal DNA of dead bacteria.In this study we optimized the EMA-staining procedure in conjunction with qPCR with pure cultures of L. pneumophila. We analyzed the potential for the EMA-qPCR method to discriminate Legionella cells with compromised or intact cell membranes. We optimized this EMA-qPCR technique, viability PCR, hereafter named v-PCR, and used it to quantify viable Legionella cells in environmental water samples. We compared our results with those obtained by conventional qPCR and culture methods. In addition, we evaluated the ability of v-PCR to monitor the efficacy of different disinfection strategies.  相似文献   

10.
Aims: Ethidium bromide monoazide (EMA) has been determined to cause delay in DNA amplification from dead bacteria at real‐time PCR. However, there is concern that the increasing EMA concentration to suppress amplification from high number of dead bacteria also affects live bacteria. The aim is to disclose a novel application of EMA for food hygienic test. Methods and Results: We performed a low‐dose double EMA treatment. Live or heat‐dead Enterobacter sakazakii (reclassified as Cronobacter spp.) in 10% powdered infant formula (PIF) solution was subjected to a treatment with 20 μg ml?1 of EMA followed by a treatment with 10 μg ml?1 of EMA without washing, and direct real‐time PCR. We observed that DNA amplification from 107 cells ml?1 of dead Ent. sakazakii was completely suppressed within 50 cycles of PCR, whereas 102–103 cells ml?1 of viable cells could be detected. When a 3‐h enrichment step in liquid medium was included after the first EMA treatment, live Ent. sakazakii could be detected at initial levels of 100–102 cells ml?1. We compared the low‐dose double‐treated EMA‐PCR with the culture method using 80 samples of PIF, and completely correlative results were obtained for both methods. Conclusions: We concluded that the newly developed low‐dose double‐treated EMA‐PCR is a very effective tool for live Ent. sakazakii detection in PIF. Significance and Impact of the Study: We focused on the specific nature of photoreactive compound that residual EMA is cancelled by irradiation. We were successful in treating bacteria with EMA in gradient concentration to increase live and dead distinction ability.  相似文献   

11.
Aims: To investigate the prevalence of culturable and nonculturable Legionella species in hot water systems of public buildings in Japan and assess the risk factors associated with Legionella contamination in hot water systems. Methods and Results: Legionella species were detected by conventional culture and molecular methods in 130 water samples collected from 40 buildings. A total of 26 (20·0%) water samples from 17 (42·5%) buildings were positive by culture, qualitative PCR or both methods: Legionella pneumophila and Leg. anisa were detected in four samples by a culture method, whereas 23 samples were positive by qualitative PCR, with the presence of various Legionella species confirmed by sequencing. Of these 23 samples, bacterial counts were quantifiable in 21 by real‐time PCR (from 1·7 × 105 to 2·6 × 1011 cells per litre). Phylogenetic analysis of amplified partial 16S rRNA gene showed close relations to various species of Legionella, including Leg. anisa and Leg. micdadei, all of which have been associated with respiratory diseases or increased antibody titres in human sera. Assessment of risk factors showed that turbidity, free chlorine concentration, iron concentration and heterotrophic plate count (HPC) were significantly associated with Legionella contamination (P < 0·05). Conclusions: Contamination of hot water systems of public buildings with culturable and nonculturable Legionella species may be a potential risk factor for Legionella infection in Japan. Adequate levels of chlorine, low levels of iron and HPC are important maintenance measures in the reduction of Legionella contamination in hot water systems. Significance and Impact of the Study: More than 40% of hot water systems in the Japanese public buildings examined were contaminated by not only culturable Leg. pneumophila and Leg. anisa but also by nonculturable pathogenic species. To our knowledge, this is the first report of both culturable and nonculturable Legionella contamination in hot water systems of public buildings in Japan.  相似文献   

12.
Quantitative Legionella PCRs targeting the 16S rRNA gene (specific for the genus Legionella) and the mip gene (specific for the species Legionella pneumophila) were applied to a total of 223 hot water system samples (131 in one laboratory and 92 in another laboratory) and 37 cooling tower samples (all in the same laboratory). The PCR results were compared with those of conventional culture. 16S rRNA gene PCR results were nonquantifiable for 2.8% of cooling tower samples and up to 39.1% of hot water system samples, and this was highly predictive of Legionella CFU counts below 250/liter. PCR cutoff values for identifying hot water system samples containing >103 CFU/liter legionellae were determined separately in each laboratory. The cutoffs differed widely between the laboratories and had sensitivities from 87.7 to 92.9% and specificities from 77.3 to 96.5%. The best specificity was obtained with mip PCR. PCR cutoffs could not be determined for cooling tower samples, as the results were highly variable and often high for culture-negative samples. Thus, quantitative Legionella PCR appears to be applicable to samples from hot water systems, but the positivity cutoff has to be determined in each laboratory.  相似文献   

13.
The effect of refrigerated and frozen storage on the viability of Vibrio vulnificus was evaluated using cell suspensions (1 × 108 CFU/ml). Ethidium bromide monoazide (EMA) was utilized to selectively allow real-time (Rti) PCR amplification of target DNA from viable but not dead cells. Bacterial survivors from the EMA Rti-PCR were evaluated by comparison with the plate count assay following different temperature exposures (− 20 and 4 °C) every 24 h for 72 h. The log CFU values from the EMA Rti-PCR assays were erroneously higher than that from plate counts. DNA amplification was not completely suppressed by EMA treatment of low temperature destroyed cells suggesting that membrane damage was not sufficient to allow effective EMA penetration into the cells. The optimal concentration of sodium deoxycholate (SD) was also determined to enhance discrimination of viable and dead cells following exposure of cells to low temperatures. The use of 0.01% or less of SD did not inhibit the Rti-PCR amplification derived from viable bacterial cells. A rapid decrease of the log CFU was observed with cell suspensions subjected to frozen storage and a slow decline in the log CFU occurred at 4 °C. The combination of SD and EMA treatments applied to cells of V. vulnificus held at − 20 °C and 4 °C resulted in a high level of correlation between the log of CFU (plate counts) and the log of the number of viable cells determined from SD+EMA Rti-PCR.  相似文献   

14.
Ethidium bromide monoazide (EMA) was utilized to selectively allow conventional PCR amplification of target DNA from viable but not dead cells from a broth culture of bacterial mixed flora derived from cod fillets. The universal primers designated DG74 and RW01 that amplify a 370-bp sequence of a highly conserved region of all eubacterial 16S rDNA were used for the PCR. The use of 10 μg/ml or less of EMA did not inhibit the PCR amplification of DNA derived from viable bacteria. The minimum amount of EMA to completely inhibit the PCR amplification of DNA derived from dead bacterial cells was 0.8 μg/ml. Amplification of target DNA from only viable cells in a suspension with dead cells was selectively accomplished by first treating the cells with 1 μg/ml of EMA. A standard curve was generated relating the intensity of fluorescence of DNA bands to the log of CFU of mixed bacterial cultures for rapidly assessing the number of genomic targets per PCR derived from the number of CFU. A linear range of DNA amplification was exhibited from 1 × 102 to 1 × 105 genomic targets per PCR. The viable/dead cell discrimination with the EMA-PCR method was evaluated by comparison with plate counts following freezing and thawing. Thawing frozen cell suspensions initially containing 1 × 105 CFU/ml at 4, 20, and 37 °C yielded a 0.8 log reduction in the number of viable cells determined by both plate counts and EMA-PCR. In contrast, thawing for 5 min at 70 °C resulted in a 5 log reduction in CFU derived from plate counts (no CFU detected) whereas the EMA-PCR procedure resulted in only a 2.8 log reduction in genomic targets, possibly reflecting greater damage to enzymes or ribosomes at 70 °C to a minority of the mixed population compared to membrane damage.  相似文献   

15.
Aims: This study was designed to define the extent of water contamination by Legionella pneumophila of certain Italian hotels and to compare quantitative real‐time PCR with the conventional culture method. Methods and Results: Nineteen Italian hotels of different sizes were investigated. In each hotel three hot water samples (boiler, room showers, recycling) and one cold water sample (inlet) were collected. Physico‐chemical parameters were also analysed. Legionella pneumophila was detected in 42% and 74% of the hotels investigated by the culture method and by real‐time PCR, respectively. In 21% of samples analysed by the culture method, a concentration of >104 CFU l?1 was found, and Leg. pneumophila serogroup 1 was isolated from 10·5% of the hotels. The presence of Leg. pneumophila was significantly influenced by water sample temperature, while no association with water hardness or residual‐free chlorine was found. Conclusions: This study showed a high percentage of buildings colonized by Leg. pneumophila. Moreover, real‐time PCR proved to be sensitive enough to detect lower levels of contamination than the culture method. Significance and Impact of the Study: This study indicates that the Italian hotels represent a possible source of risk for Legionnaires’ disease and confirms the sensitivity of the molecular method. To our knowledge, this is the first report to demonstrate Legionella contamination in Italian hotels using real‐time PCR and culture methods.  相似文献   

16.
Targeted species‐specific and community‐wide molecular diagnostics tools are being used with increasing frequency to detect invasive or rare species. Few studies have compared the sensitivity and specificity of these approaches. In the present study environmental DNA from 90 filtered seawater and 120 biofouling samples was analyzed with quantitative PCR (qPCR), droplet digital PCR (ddPCR) and metabarcoding targeting the cytochrome c oxidase I (COI) and 18S rRNA genes for the Mediterranean fanworm Sabella spallanzanii. The qPCR analyses detected S. spallanzanii in 53% of water and 85% of biofouling samples. Using ddPCR S. spallanzanii was detected in 61% of water of water and 95% of biofouling samples. There were strong relationships between COI copy numbers determined via qPCR and ddPCR (water R2 = 0.81, p < .001, biofouling R2 = 0.68, p < .001); however, qPCR copy numbers were on average 125‐fold lower than those measured using ddPCR. Using metabarcoding there was higher detection in water samples when targeting the COI (40%) compared to 18S rRNA (5.4%). The difference was less pronounced in biofouling samples (25% COI, 29% 18S rRNA). Occupancy modelling showed that although the occupancy estimate was higher for biofouling samples (ψ = 1.0), higher probabilities of detection were derived for water samples. Detection probabilities of ddPCR (1.0) and qPCR (0.93) were nearly double metabarcoding (0.57 to 0.27 marker dependent). Studies that aim to detect specific invasive or rare species in environmental samples should consider using targeted approaches until a detailed understanding of how community and matrix complexity, and primer biases affect metabarcoding data.  相似文献   

17.
Legionella species are the causative agents of human legionellosis, and bathing facilities have been identified as the sources of infection in several outbreaks in Japan. Researchers in Japan have recently reported evidence of significant associations between bacterial counts and the occurrence of Legionella in bathing facilities and in a hot tub model. A convenient and quantitative bacterial enumeration method is therefore required as an indicator of Legionella contamination or disinfection to replace existing methods such as time-consuming Legionella culture and expensive Legionella-DNA amplification. In this study, we developed a rapid detection method (RDM) to monitor the risk of Legionella using an automated microbial analyzing device based on flow cytometry techniques to measure the total number of bacteria in water samples within two minutes, by detecting typical patterns of scattered light and fluorescence. We first compared the results of our RDM with plate counting results for five filtered hot spring water samples spiked with three species of bacteria, including Legionella. Inactivation of these samples by chlorine was also assessed by the RDM, a live/dead bacterial fluorescence assay and plate counting. Using the RDM, the lower limit of quantitative bacterial counts in the spiked samples was determined as 3.0 × 103 (3.48 log) counts mL− 1. We then used a laboratory model of a hot tub and found that the RDM could monitor the growth curve of naturally occurring heterotrophic bacteria with 1 and 2 days' delayed growth of amoeba and Legionella, respectively, and could also determine the killing curve of these bacteria by chlorination. Finally, samples with ≥ 3.48 or < 3.48 log total bacterial counts mL− 1 were tested using the RDM from 149 different hot tubs, and were found to be significantly associated with the positive or negative detection of Legionella with 95% sensitivity and 84% specificity. These findings indicated that the RDM can be used for Legionella control at bathing facilities, especially those where the effectiveness of chlorine is reduced by the presence of Fe2+, Mn2+, NH4+, skin debris, and/or biofilms in the water.  相似文献   

18.

Background

Culture and quantitative polymerase chain reaction (qPCR) assays for the detection of Legionella were compared on samples from a residential area before and after two interventions. A total of 84 samples were collected from shower hoses and taps as first flush samples and at constant temperature. Samples were grouped according to the origin of the sample, a) circulation water b) water from empty apartments c) water from shower hoses. The aims were to investigate the usefulness of qPCR compared to culture for monitoring remedial actions for elimination of Legionella bacteria and as a tool for risk assessment.

Results

In water collected from the apartments Legionella spp were detected by qPCR in the concentration range from LOQ to 9.6*105GU/L while L. pneumophila were detected in a range from LOQ to 6.8*105 GU/L. By culturing, the legionellae were detected in the range from below detection limit (> 10 CFU/L) to 1.6*106 CFU/L. In circulating water and in first flush water from shower hoses, culture and qPCR showed the same tendencies. The overall correlation between the bacteria number detected by culture and the two developed qPCR assays (L. spp and L. pneumophila) was relatively poor (r2 = 0.31 for culture and Legionella spp. assay, r2 = 0.20 for culture and L. pneumophila assay).

Conclusion

Detection by qPCR was suitable for monitoring changes in the concentration of Legionella but the precise determination of bacteria is difficult. Risk assessment by qPCR only on samples without any background information regarding treatment, timing, etc is dubious. However, the rapid detection by qPCR of high concentrations of Legionella - especially Legionella pneumophila - is valuable as an indicator of risk, although it may be false positive compared to culture results. On the other hand, the detection of a low number of bacteria by qPCR is a strong indication for the absence of risk.
  相似文献   

19.
Propidium monoazide (PMA) or ethidium bromide monoazide (EMA) treatment has been used before nucleic acid detection methods, such as PCR, to distinguish between live and dead cells using membrane integrity as viability criterion. The performance of these DNA intercalating dyes was compared in many studies utilizing different microorganisms. These studies demonstrated that EMA and PMA differ in their abilities to identify nonviable cells from mixed cell populations, depending on the microorganism and the nature of the sample. Due to this heterogeneity, both dyes were used in the present study to specifically distinguish dead from live Candida albicans cells using viable quantitative PCR (qPCR). The viable qPCR was optimized, and the best results were obtained when pre-treating the cells for 10 min in the dark with 25 μM EMA followed by continuous photoactivation for 15 min. The suitability of this technique to distinguish clotrimazole- and fluconazole-treated C. albicans cells from untreated cells was then assessed. Furthermore, the antifungal properties of two commercial essential oils (Thymus vulgaris and Matricaria chamomilla) were evaluated. The viable qPCR method was determined to be a feasible technique for assessing the viability of C. albicans after drug treatment and may help to provide a rapid diagnostic and susceptibility testing method for fungal infections, especially for patients treated with antifungal therapies.  相似文献   

20.
Aims: The aim of this study was to develop and optimize a novel method that combines ethidium bromide monoazide (EMA) staining with real‐time PCR for the detection of viable Escherichia  coli O157:H7 in ground beef. EMA can penetrate dead cells and bind to intracellular DNA, preventing its amplification via PCR. Methods and Results: Samples were stained with EMA for 5 min, iced for 1 min and exposed to bright visible light for 10 min prior to DNA extraction, to allow EMA binding of the DNA from dead cells. DNA was then extracted and amplified by TaqMan® real‐time PCR to detect only viable E. coli O157:H7 cells. The primers and TaqMan® probe used in this study target the uidA gene in E. coli O157:H7. An internal amplification control (IAC), consisting of 0·25 pg of plasmid pUC19, was added in each reaction to prevent the occurrence of false‐negative results. Results showed a reproducible application of this technique to detect viable cells in both broth culture and ground beef. EMA, at a final concentration of 10 μg ml?1, was demonstrated to effectively bind DNA from 108 CFU ml?1 dead cells, and the optimized method could detect as low as 104 CFU g?1 of viable E. coli O157:H7 cells in ground beef without interference from 108 CFU g?1 of dead cells. Conclusions: EMA real‐time PCR with IAC can effectively separate dead cells from viable E. coli O157:H7 and prevent amplification of DNA in the dead cells. Significance and Impact of the Study: The EMA real‐time PCR has the potential to be a highly sensitive quantitative detection technique to assess the contamination of viable E. coli O157:H7 in ground beef and other meat or food products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号