首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synovial intercellular space is the path by which water, nutrients, cytokines, and macromolecules enter and leave the joint cavity. In this study two structural factors influencing synovial permeability were quantified by morphometry (Delesse's principle) of synovial electronmicrographs (rabbit knee), namely interstitial volume fraction Vv.1 and the fraction of the interstitium obstructed by collagen fibrils. Mean Vv.1 across the full thickness was 0.66 +/- 0.03 SEM (n = 11); but Vv.1 actually varied systematically with depth normal to the surface, increasing nonlinearly from 0.40 +/- 0.04 (n = 5 joints) near the free surface to 0.92 +/- 0.02 near the subsynovial interface. Tending to offset this increase in transport space, however, the space "blocked" by collagen fibrils also increased nonlinearly with depth. Bundles of collagen fibrils occupied 13.6 +/- 2.4% of interstitial volume close to the free surface but 49 +/- 4.8% near the subsynovial surface (full-thickness average, 40.5 +/- 3.5%), with fibrils accounting for 48.6-57.1% of the bundle space. Because of the two counteracting compositional gradients, the space available for fibril-excluded transport (hydraulic flow and macromolecular diffusion) was relatively constant > 4 microns below the surface but constricted at the synovium-cavity interface. The space available to extracellular polymers was only 51-53% of tissue volume, raising their effective concentration and hence the lining's resistance to flow and ability to confine the synovial fluid.  相似文献   

2.
The lymphatic system is an extensive vascular network featuring valves and contractile walls that pump interstitial fluid and plasma proteins back to the main circulation. Immune function also relies on the lymphatic system's ability to transport white blood cells. Failure to drain and pump this excess fluid results in edema characterized by fluid retention and swelling of limbs. It is, therefore, important to understand the mechanisms of fluid transport and pumping of lymphatic vessels. Unfortunately, there are very few studies in this area, most of which assume Poiseuille flow conditions. In vivo observations reveal that these vessels contract strongly, with diameter changes of the order of magnitude of the diameter itself over a cycle that lasts typically 2-3s. The radial velocity of the contracting vessel is on the order of the axial fluid velocity, suggesting that modeling flow in these vessels with a Poiseuille model is inappropriate. In this paper, we describe a model of a radially expanding and contracting lymphatic vessel and investigate the validity of assuming Poiseuille flow to estimate wall shear stress, which is presumably important for lymphatic endothelial cell mechanotransduction. Three different wall motions, periodic sinusoidal, skewed sinusoidal and physiologic wall motions, were investigated with steady and unsteady parabolic inlet velocities. Despite high radial velocities resulting from the wall motion, wall shear stress values were within 4% of quasi-static Poiseuille values. Therefore, Poiseuille flow is valid for the estimation of wall shear stress for the majority of the lymphangion contractile cycle.  相似文献   

3.
In this paper, a simple theoretical model is developed to describe the transmission of force from interstitial fluid flow to the surface of a cell covered by a proteoglycan / glycoprotein layer (glycocalyx) and embedded in an extracellular matrix. Brinkman equations are used to describe flow through the extracellular matrix and glycocalyx layers and the solid mechanical stress developed in the glycocalyx by the fluid flow loading is determined. Using reasonable values for the Darcy permeability of extracellular matrix and glycocalyx layers and interstitial flow velocity, we are able to estimate the fluid and solid shear stresses imposed on the surface of embedded vascular, cartilage and tumor cells in vivo and in vitro. The principal finding is that the surface solid stress is typically one to two orders of magnitude larger than the surface fluid stress. This indicates that interstitial flow shear stress can be sensed by the cell surface glycocalyx, supporting numerous recent observations that interstitial flow can induce mechanotransduction in embedded cells. This study may contribute to understanding of interstitial flow-related mechanobiology in embryogenesis, tumorigenesis, tissue physiology and diseases and has implications in tissue engineering.  相似文献   

4.
The functional properties of cartilaginous tissues are determined predominantly by the content, distribution, and organization of proteoglycan and collagen in the extracellular matrix. Extracellular matrix accumulates in tissue-engineered cartilage constructs by metabolism and transport of matrix molecules, processes that are modulated by physical and chemical factors. Constructs incubated under free-swelling conditions with freely permeable or highly permeable membranes exhibit symmetric surface regions of soft tissue. The variation in tissue properties with depth from the surfaces suggests the hypothesis that the transport processes mediated by the boundary conditions govern the distribution of proteoglycan in such constructs. A continuum model (DiMicco and Sah in Transport Porus Med 50:57–73, 2003) was extended to test the effects of membrane permeability and perfusion on proteoglycan accumulation in tissue- engineered cartilage. The concentrations of soluble, bound, and degraded proteoglycan were analyzed as functions of time, space, and non-dimensional parameters for several experimental configurations. The results of the model suggest that the boundary condition at the membrane surface and the rate of perfusion, described by non-dimensional parameters, are important determinants of the pattern of proteoglycan accumulation. With perfusion, the proteoglycan profile is skewed, and decreases or increases in magnitude depending on the level of flow-based stimulation. Utilization of a semi-permeable membrane with or without unidirectional flow may lead to tissues with depth-increasing proteoglycan content, resembling native articular cartilage.  相似文献   

5.
Because of the avascular nature of adult cartilage, nutrients and waste products are transported to and from the chondrocytes by diffusion and convection through the extracellular matrix. The convective interstitial fluid flow within and around chondrocytes is poorly understood. This theoretical study demonstrates that the incorporation of a semi-permeable membrane when modeling the chondrocyte leads to the following findings: under mechanical loading of an isolated chondrocyte the intracellular fluid pressure is on the order of tens of Pascals and the transmembrane fluid outflow, on the order of picometers per second, takes several days to subside; consequently, the chondrocyte behaves practically as an incompressible solid whenever the loading duration is on the order of minutes or hours. When embedded in its extracellular matrix (ECM), the chondrocyte response is substantially different. Mechanical loading of the tissue leads to a fluid pressure difference between intracellular and extracellular compartments on the order of tens of kilopascals and the transmembrane outflow, on the order of a nanometer per second, subsides in about 1 h. The volume of the chondrocyte decreases concomitantly with that of the ECM. The interstitial fluid flow in the extracellular matrix is directed around the cell, with peak values on the order of tens of nanometers per second. The viscous fluid shear stress acting on the cell surface is several orders of magnitude smaller than the solid matrix shear stresses resulting from the ECM deformation. These results provide new insight toward our understanding of water transport in chondrocytes.  相似文献   

6.
Hydrogel has been extensively studied as an articular cartilage repair and replacement material. PVA-HA-Silk composite hydrogel was prepared by freezing-thawing method in this paper. Mechanical properties were determined by experiments and the friction coefficient of PVA-HA-Silk composite hydrogel against steel ball was verified using micro-tribometer. Finite Element Method (FEM) was used to study the lubrication mechanism of PVA-HA-Silk composite hydrogel and the relation between the interstitial fluid load support and the start-up friction resistance. The results show that the elastic modulus and the permeability are 2.07 MPa and 10^-15m^4N^-1s^-1, respectively, and the start-up friction coefficients of PVA-HA-Silk composite hydrogel are in the range of 0.154).2 at different contact loads, contact time and sliding speeds. The start-up friction resistance of PVA-HA-Silk composite hydrogel increases with the contact load and contact time. With the increase in sliding speed, the start-up friction resistance of PVA-HA-Silk composite hydrogel decreases. There is an inverse relation between the start-up friction resistance and the interstitial fluid load support. The change of fluid flow with the increase in sliding displacement has an important effect on the interstitial fluid load support and friction resistance. The interstitial fluid load support decreases with the increase in contact load and contact time, while the interstitial fluid load support reinforces with the increase in sliding speed. Moreover, PVA-HA-Silk composite hydrogel has mechanical properties of recovery and self-lubricating.  相似文献   

7.
8.
Mechanical cues are known to regulate tissue differentiation during skeletal healing. Quantitative characterization of this mechano-regulatory effect has great therapeutic potential. This study tested an existing theory that shear strain and interstitial fluid flow govern skeletal tissue differentiation by applying this theory to a scenario in which a bending motion applied to a healing transverse osteotomy results in cartilage, rather than bone, formation. A 3-D finite element mesh was created from micro-computed tomography images of a bending-stimulated callus and was used to estimate the mechanical conditions present in the callus during the mechanical stimulation. Predictions regarding the patterns of tissues—cartilage, fibrous tissue, and bone—that formed were made based on the distributions of fluid velocity and octahedral shear strain. These predictions were compared to histological sections obtained from a previous study. The mechano-regulation theory correctly predicted formation of large volumes of cartilage within the osteotomy gap and many, though not all patterns of tissue formation observed throughout the callus. The results support the concept that interstitial fluid velocity and tissue shear strain are key mec- hanical stimuli for the differentiation of skeletal tissues.  相似文献   

9.
The extent to which articular cartilage hydraulic permeability is anisotropic is largely unknown, despite its importance for understanding mechanisms of joint lubrication, load bearing, transport phenomena, and mechanotransduction. We developed and applied new techniques for the direct measurement of hydraulic permeability within statically compressed adult bovine cartilage explant disks, dissected such that disk axes were perpendicular to the articular surface. Applied pressure gradients were kept small to minimize flow-induced matrix compaction, and fluid outflows were measured by observation of a meniscus in a glass capillary under a microscope. Explant disk geometry under radially unconfined axial compression was measured by direct microscopic observation. Pressure, flow, and geometry data were input to a finite element model where hydraulic permeabilities in the disk axial and radial directions were determined. At less than 10% static compression, near free-swelling conditions, hydraulic permeability was nearly isotropic, with values corresponding to those of previous studies. With increasing static compression, hydraulic permeability decreased, but the radially directed permeability decreased more dramatically than the axially directed permeability such that strong anisotropy (a 10-fold difference between axial and radial directions) in the hydraulic permeability tensor was evident for static compression of 20-40%. Results correspond well with predictions of a previous microstructurally-based model for effects of tissue mechanical deformations on glycosaminoglycan architecture and cartilage hydraulic permeability. Findings inform understanding of structure-function relationships in cartilage matrix, and suggest several biomechanical roles for compression-induced anisotropic hydraulic permeability in articular cartilage.  相似文献   

10.
Hindered barrier function has been implicated in the initiation and progression of atherosclerosis, a disease of focal nature associated with altered hemodynamics. In this study, endothelial permeability to macromolecules and endothelial electrical resistance were investigated in vitro in monolayers exposed to disturbed flow fields that model spatial variations in fluid shear stress found at arterial bifurcations. After 5 h of flow, areas of high shear stress gradients showed a 5.5-fold increase in transendothelial transport of dextran (molecular weight 70,000) compared with no-flow controls. Areas of undisturbed fully developed flow, within the same monolayer, showed a 2.9-fold increase. Monolayer electrical resistance decreased with exposure to flow. The resistance measured during flow and the rate of change in monolayer resistance after removal of flow were lowest in the vicinity of flow reattachment (highest shear stress gradients). These results demonstrate that endothelial barrier function and permeability to macromolecules are regulated by spatial variations in shear stress forces in vitro.  相似文献   

11.
Chen CT  Malkus DS  Vanderby R 《Biorheology》1998,35(2):103-118
Collagen fibrils in ligaments and tendons are highly organized into parallel arrays which influence interstitial fluid transport. Finite element (FE) models were developed analogous to the fibrillar arrays in ligaments and tendons to investigate interstitial fluid flow and tissue permeability as a function of interfibrillar spacing and fluid properties. Collagen fibrils were assumed to be a periodic square array of impermeable cylinders. A two-dimensional FE model was used to study transverse fluid flow and a three-dimensional model was used to study flow parallel to the collagen fibrils. Parametric FE analysis provided data to formulate empirical expressions for permeability (kappa) as a function of porosity (phi). Results show that longitudinal permeability (kappa = 1.1.10(-15)phi 2.5[1 - phi]-0.333) can be up to 50 times higher than transverse permeability (kappa = 1.2.10(-15)phi 0.5[phi - phi min]2.5) in a compact array. Maximum fluid shear stresses occur at the narrowest zones of adjacent fibrils (1.21 Pa or 12.1 dyn/cm2 at 10 microns/s of average transverse influx). If interstitial fluid is highly non-Newtonian, the permeability should be considered as flow (shear)-dependent. The computational results suggest that tissue permeability in ligaments and tendons is highly anisotropic, porosity-dependent, and can be estimated by analytic expressions.  相似文献   

12.
Recent in-vivo and in-vitro evidence indicates that fluid shear stress on the membrane of leukocytes has a powerful control over several aspects of their cell function. This evidence raises a question about the magnitude of the fluid shear stress on leukocytes in the circulation. The flow of plasma on the surface of a leukocyte at a very low Reynolds number is governed by the Stokes equation for the motion of a Newtonian fluid. We numerically estimated the distribution of fluid shear stress on a leukocyte membrane in a microvessel for the cases when the leukocyte is freely suspended, as well as rolling along or attached to a microvessel wall. The results indicate that the fluid shear stress distribution on the leukocyte membrane is nonuniform with a sharp increase when the leukocyte makes membrane attachment to the microvessel wall. In a microvessel (10 microns diameter), the fluid shear stress on the membrane of a freely suspended leukocyte (8 microns diameter) is estimated to be several times larger than the wall shear stress exerted by the undisturbed Poiseuille flow, and increases on an adherent leukocyte up to ten times. High temporal stress gradients are present in freely suspended leukocytes in shear flow due to cell rotation, which are proportional to the local shear rate. In comparison, the temporal stress gradients are reduced on the membrane of leukocytes that are rolling or firmly adhered to the endothelium. High temporal gradients of shear stress are also present on the endothelial wall. At a plasma viscosity of 1 cPoise, the peak shear stresses for suspended and adherent leukocytes are of the order of 10 dyn/cm2 and 100 dyn/cm2, respectively.  相似文献   

13.
The objective of this study is to establish and verify the set of boundary conditions at the interface between a biphasic mixture (articular cartilage) and a Newtonian or non-Newtonian fluid (synovial fluid) such that a set of well-posed mathematical problems may be formulated to investigate joint lubrication problems. A "pseudo-no-slip" kinematic boundary condition is proposed based upon the principle that the conditions at the interface between mixtures or mixtures and fluids must reduce to those boundary conditions in single phase continuum mechanics. From this proposed kinematic boundary condition, and balances of mass, momentum and energy, the boundary conditions at the interface between a biphasic mixture and a Newtonian or non-Newtonian fluid are mathematically derived. Based upon these general results, the appropriate boundary conditions needed in modeling the cartilage-synovial fluid-cartilage lubrication problem are deduced. For two simple cases where a Newtonian viscous fluid is forced to flow (with imposed Couette or Poiseuille flow conditions) over a porous-permeable biphasic material of relatively low permeability, the well known empirical Taylor slip condition may be derived using matched asymptotic analysis of the boundary layer at the interface.  相似文献   

14.
Cell disaggregation behavior in shear flow.   总被引:3,自引:0,他引:3       下载免费PDF全文
P Snabre  M Bitbol    P Mills 《Biophysical journal》1987,51(5):795-807
  相似文献   

15.
The remarkable mechanical properties of cartilage derive from an interplay of isotropically distributed, densely packed and negatively charged proteoglycans; a highly anisotropic and inhomogeneously oriented fiber network of collagens; and an interstitial electrolytic fluid. We propose a new 3D finite strain constitutive model capable of simultaneously addressing both solid (reinforcement) and fluid (permeability) dependence of the tissue’s mechanical response on the patient-specific collagen fiber network. To represent fiber reinforcement, we integrate the strain energies of single collagen fibers—weighted by an orientation distribution function (ODF) defined over a unit sphere—over the distributed fiber orientations in 3D. We define the anisotropic intrinsic permeability of the tissue with a structure tensor based again on the integration of the local ODF over all spatial fiber orientations. By design, our modeling formulation accepts structural data on patient-specific collagen fiber networks as determined via diffusion tensor MRI. We implement our new model in 3D large strain finite elements and study the distributions of interstitial fluid pressure, fluid pressure load support and shear stress within a cartilage sample under indentation. Results show that the fiber network dramatically increases interstitial fluid pressure and focuses it near the surface. Inhomogeneity in the tissue’s composition also increases fluid pressure and reduces shear stress in the solid. Finally, a biphasic neo-Hookean material model, as is available in commercial finite element codes, does not capture important features of the intra-tissue response, e.g., distributions of interstitial fluid pressure and principal shear stress.  相似文献   

16.
This work presents a computational model of tissue growth under interstitial perfusion inside a tissue engineering bioreactor. The model accounts both for the cell population dynamics, using a model based on cellular automata, and for the hydrodynamic microenvironment imposed by the bioreactor, using a model based on the Lattice–Boltzmann equation and the convection-diffusion equation. The conditions of static culture versus perfused culture were compared, by including the population dynamics along with oxygen diffusion, convective transport and consumption. The model is able to deal with arbitrary complex geometries of the spatial domain; in the present work, the domain modeled was the void space of a porous scaffold for tissue-engineered cartilage. The cell population dynamics algorithm provided results which qualitatively resembled population dynamics patterns observed in experimental studies, and these results were in good quantitative agreement with previous computational studies. Simulation of oxygen transport and consumption showed the fundamental contribution of convective transport in maintaining a high level of oxygen concentration in the whole spatial domain of the scaffold. The model was designed with the aim to be computationally efficient and easily expandable, i.e. to allow straightforward implementability of further models of complex biological phenomena of increasing scientific interest in tissue engineering, such as chemotaxis, extracellular matrix deposition and effect of mechanical stimulation.  相似文献   

17.
In the creation of engineered tissue constructs, the successful transport of nutrients and oxygen to the contained cells is a significant challenge. In highly porous scaffolds subject to cyclic strain, the mechanical deformations can induce substantial fluid pressure gradients, which affect the transport of solutes. In this article, we describe a poroelastic model to predict the solid and fluid mechanics of a highly porous hydrogel subject to cyclic strain. The model was validated by matching the predicted penetration of a bead into the hydrogel from the model with experimental observations and provides insight into nutrient transport. Additionally, the model provides estimates of the wall-shear stresses experienced by the cells embedded within the scaffold. These results provide insight into the mechanics of and convective nutrient transport within a cyclically strained hydrogel, which could lead to the improved design of engineered tissues.  相似文献   

18.
This work presents a computational model of tissue growth under interstitial perfusion inside a tissue engineering bioreactor. The model accounts both for the cell population dynamics, using a model based on cellular automata, and for the hydrodynamic microenvironment imposed by the bioreactor, using a model based on the Lattice-Boltzmann equation and the convection-diffusion equation. The conditions of static culture versus perfused culture were compared, by including the population dynamics along with oxygen diffusion, convective transport and consumption. The model is able to deal with arbitrary complex geometries of the spatial domain; in the present work, the domain modeled was the void space of a porous scaffold for tissue-engineered cartilage. The cell population dynamics algorithm provided results which qualitatively resembled population dynamics patterns observed in experimental studies, and these results were in good quantitative agreement with previous computational studies. Simulation of oxygen transport and consumption showed the fundamental contribution of convective transport in maintaining a high level of oxygen concentration in the whole spatial domain of the scaffold. The model was designed with the aim to be computationally efficient and easily expandable, i.e. to allow straightforward implementability of further models of complex biological phenomena of increasing scientific interest in tissue engineering, such as chemotaxis, extracellular matrix deposition and effect of mechanical stimulation.  相似文献   

19.
In the creation of engineered tissue constructs, the successful transport of nutrients and oxygen to the contained cells is a significant challenge. In highly porous scaffolds subject to cyclic strain, the mechanical deformations can induce substantial fluid pressure gradients, which affect the transport of solutes. In this article, we describe a poroelastic model to predict the solid and fluid mechanics of a highly porous hydrogel subject to cyclic strain. The model was validated by matching the predicted penetration of a bead into the hydrogel from the model with experimental observations and provides insight into nutrient transport. Additionally, the model provides estimates of the wall-shear stresses experienced by the cells embedded within the scaffold. These results provide insight into the mechanics of and convective nutrient transport within a cyclically strained hydrogel, which could lead to the improved design of engineered tissues.  相似文献   

20.
In the interstitial matrix, collagen unfolding at physiologic temperatures is thought to facilitate interactions with enzymes and scaffold molecules during inflammation, tissue remodeling, and wound healing. We tested the hypothesis that it also plays a role in modulating flows and matrix hydration potential. After progressively unfolding dermal collagen in situ, we measured the hydration parameters by osmotic stress techniques and modeled them as linear functions of unfolded collagen, quantified by differential scanning calorimetry after timed heat treatment. Consistent with the hypothetical model, the thermodynamic and flow parameters obtained experimentally were related linearly to the unfolded collagen fraction. The increases in relative humidity and intensity of T2 maps were also consistent with interfacial energy contributions to the hydration potential and the hydrophobic character of the newly formed protein/water interfaces. As a plausible explanation, we propose that increased tension at interfaces formed during collagen unfolding generate local gradients in the matrix that accelerate water transfer in the dermis. This mechanism adds a convective component to interstitial transfer of biological fluids that, unlike diffusion, can speed the dispersion of water and large solutes within the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号