首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
A centromere-based linkage group on the long arm of human chromosome 17   总被引:2,自引:0,他引:2  
A genetic linkage group on the long arm of chromosome 17 is reported. A maximum likelihood of theta = 0.20 between the centromere-based locus D17Z1 and COL1A1 has been found, as well as a theta = 0.10 between COL1A1 and GH1. The most likely order of the three loci is D17Z1-COL1A1-GH1.  相似文献   

2.
Linkage analysis in French-Canadian families with vitamin D dependency type I (VDD1) demonstrated that the gene responsible for the disease is linked to polymorphic RFLP markers in the 12q14 region. We studied 76 subjects in 14 sibships which included 17 affected individuals and 17 obligate heterozygotes. Significant results for linkage were obtained with the D12S17 locus at the male recombination fraction (theta m) .018 (Z[theta m theta f] = 3.20) and with D126 at (theta m = .025 (Z[theta m theta f] = 3.07). Multipoint linkage analysis and studies of haplotypes and recombinants strongly suggest the localization of the VDD1 locus between the collagen type II alpha 1 (COL2A1) locus and clustered loci D12S14, D12S17, and D12S6, which segregate as a three-marker haplotype. Linkage disequilibrium between VDD1 and this three-marker haplotype supports the notion of a founder effect in the studied population. The current status of the localization of the disease allows for carrier detection in the families at risk.  相似文献   

3.
Waardenburg syndrome type I (WS1; MIM 19350) is caused by a pleiotropic, autosomal dominant mutation with variable penetrance and expressivity. Of individuals with this mutation, 20%-25% are hearing impaired. A multilocus linkage analysis of RFLP data from a single WS1 family with 11 affected individuals indicates that the WS1 mutation in this family is linked to the following four marker loci located on the long arm of chromosome 2: ALPP (alkaline phosphatase, placental), FN1 (fibronectin 1), D2S3 (a unique-copy DNA segment), and COL6A3 (collagen VI, alpha 3). For the RFLP marker loci, a multilocus linkage analysis using MLINK produced a peak lod (Z) of 3.23 for the following linkage relationships and recombination fractions (theta i): (ALPP----.000----FN1)----.122----D2S3----.267----CO L6A3. A similar analysis produced a Z of 6.67 for the following linkage relationships and theta i values among the markers and WS1: (FN1----.000----WS1----.000----ALPP)----.123----D2S 3----.246----COL6A3. The data confirm the conclusion of Foy et al. that at least some WS1 mutations map to chromosome 2q.  相似文献   

4.
Two of the human fibrillar collagen genes, proa1(III) (COL3A1) and proa2(V) (COL5A2), map to the same region of the long arm of chromosome 2. To establish the genetic distance between the two loci, we analyzed the segregation of COL3A1 and COL5A2 RFLPs in five families informative for the two loci specific markers. We found that the maximum lod score was 9.33 at a recombination frequency of theta = 0.00. The data therefore provide strong evidence for tight linkage between two evolutionarily related fibrillar collagen genes on the 2q14----2q32 segment of chromosome 2.  相似文献   

5.
The von Recklinghausen neurofibromatosis (NF1) gene has been localized to the pericentromeric region of chromosome 17. We have screened six multigenerational families with multiple, tightly linked markers to aid in mapping this region of the chromosome. More than 150 members in six families were typed with probes including HHH202, D17Z1, EW203, EW206, EW207, EW301, pA10-41, D17S37, and D17S36. Two-point lod scores for NF1 versus all markers were calculated. HHH202 demonstrated the tightest linkage to NF1 with theta = .0, z = 3.86 (95% confidence limits [CL] of theta = .0-.13), suggesting that HHH202 be considered as a potential candidate marker for use in carrier detection and prenatal diagnosis. Pairwise marker-to-marker lod scores were used in examining the most likely order of subsets of the markers. Of those tested, the most likely order was (pter)-pA10-41-EW301-D17Z1-HHH202-NF1-E W206-EW207-EW203-(qter). In addition, we have ascertained an NF1 x NF1 half-cousin mating in which there are four affected family members who are potentially homozygous for the disease gene. Two of these four individuals have been sampled and typed for marker loci. When their D17Z1 genotypes are considered, the probability that both these individuals are heterozygous is 85%.  相似文献   

6.
The autosomal dominant forms of hereditary motor and sensory neuropathies include the hypertrophic form (CMT1) and the neuronal form of Charcot-Marie-Tooth disease (CMT2). While at least two distinct loci have been shown to be linked to the CMT1 phenotype (CMT1A and CMT1B, on chromosomes 17 and 1, respectively), whether the CMT2 phenotype results from mutations allelic to either of the CMT1 genes remains unknown. Studying one CMT1 and two CMT2 pedigrees, we were able to exclude the CMT2 disease locus from the region of chromosome 17 (Z = -2.80 at theta = 0.05 for D17S58) where the CMT1A gene maps (Z = +3.67 at theta = 0.00). Similarly, negative lod score values were obtained in CMT2 for the region of chromosome 1 where the CMT1B gene has been located (Z = -3.09 at theta = 0.05 for D1S61). The present study therefore provides evidence for genetic heterogeneity between the hypertrophic and the neuronal forms of Charcot-Marie-Tooth disease and demonstrates that the CMT2 gene is not allelic to either of the CMT1 genes mapped to date.  相似文献   

7.
A gene for pyridoxine-dependent epilepsy maps to chromosome 5q31   总被引:12,自引:0,他引:12       下载免费PDF全文
Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive disorder characterized by generalized seizures in the first hours of life and responding only to pyridoxine hydrochloride. The pathogenesis of PDE is unknown, but an alteration in the binding of pyridoxal 5-phosphate to glutamic acid decarboxylase (GAD) has been postulated in patients with PDE. Results are reported for genetic linkage analyses in four families with consanguineous parents and in one family with nonconsanguineous parents. The GAD1 (2q31) and GAD2 genes (10p23) were tested and excluded. A genomewide search was subsequently performed, using microsatellite markers at an average distance of 10 cM, and the search revealed linkage of the disease-causing gene to markers on chromosome 5q31.2-q31.3 (maximum LOD score [Z(max)] 8.43 at recombination fraction [theta] 0 and Zmax=7.58 at straight theta=0 at loci D5S2017 and D5S1972, respectively). A recombination event, between loci D5S638 and D5S463, in one family defined the distal boundary, and a second recombination event between loci D5S2011 and D5S2017 in another family defined the proximal boundary of the genetic interval encompassing the PDE gene (5.1 cM). Ongoing studies may lead to the identification of the disease-causing gene.  相似文献   

8.
The segregation of COL1A1 and COL1A2, the two genes which encode the chains of type I collagen, was analyzed in 38 dominant osteogenesis imperfecta (OI) pedigrees by using polymorphic markers within or close to the genes. This was done in order to estimate the consistency of linkage of OI genes to these two loci. None of the 38 pedigrees showed evidence of recombination between the OI gene and both collagen loci, suggesting that the frequency of unlinked loci in the population must be low. From these results, approximate 95% confidence limits for the proportion of families linked to the type I collagen genes can be set between .91 and 1.00. This is high enough to base prenatal diagnosis of dominantly inherited OI on linkage to these genes even in families which are too small for the linkage to be independently confirmed to high levels of significance. When phenotypic features were compared with the concordant collagen locus, all eight pedigrees with Sillence OI type IV segregated with COL1A2. On the other hand, Sillence OI type I segregated with both COL1A1 (17 pedigrees) and COL1A2 (7 pedigrees). The concordant locus was uncertain in the remaining six OI type I pedigrees. Of several other features, the presence or absence of presenile hearing loss was the best predictor of the mutant locus in OI type I families, with 13 of the 17 COL1A1 segregants and none of the 7 COL1A2 segregants showing this feature.  相似文献   

9.
A genetic linkage study of the RFLPs identified by nine DNA probes localized to the pericentromeric region and long arm of chromosome 17 has been undertaken in 16 families with von Recklinghausen neurofibromatosis (NF1). Close linkage has been shown with the markers CRI-L946 (D17S36), CRI-L581 (D17S37), p17H8 (D17Z1), and pA10-41 (D17S71). The ERBA1 and COL1A1 loci may also be closely linked, but the data are limited. The results for HOX2 and NGFR suggest only loose linkage with the NF1 gene, while no linkage was found between NF1 and the growth hormone locus. No suggestion of nonallelic heterogeneity of NF1 was found in this study.  相似文献   

10.
BACKGROUND: The genetic factors involved in determining bone mineral density (BMD) have not been fully elucidated. We have begun genetic linkage analysis of seven families in which many members are osteopenic, in order to identify chromosomal loci that are potentially involved in determining BMD. MATERIALS AND METHODS: Spine BMD was measured in 143 members of seven kindred with familial osteopenia. The absolute BMD values for the spine (L2-L4) were converted to the age-, gender-, and weight-adjusted Z scores, and this corrected value was used as the quantitative trait on which to base subsequent genetic analyses. Simulations of linkage were performed in order to determine the information content of the pedigree set, and actual linkage analysis was conducted using polymorphic markers either within or near three candidate loci: COL1A1, COL1A2, and vitamin D receptor (VDR). RESULTS: The distribution of the corrected Z scores was bimodal (p = 0.001) suggesting a monogenic mode of inheritance of the low BMD trait. Simulation of linkage analysis suggested that the family data set was sufficient to detect linkage under a single major gene model. Actual linkage analysis did not support linkage to the three candidate loci. In addition, the VDR genotype was not statistically associated with low bone density at the spine. CONCLUSIONS: Loci other than COL1A1, COL1A2 and VDR are very likely responsible for the low BMD trait observed in these families. These families are suitable for a genome-wide screen using microsatellite repeats in order to identify the loci that are involved in osteopenia.  相似文献   

11.
We report the study of five independent X-linked hydrocephalus (HSAS1) families with polymorphic DNA markers of the Xq28 region. A total of 58 individuals, including 7 living affected males and 22 obligate carriers, have been studied. Maximum lod score was 7.21 at theta = 2.40% for DXS52 (St14-1). A single recombination event was observed between this marker and the HSAS1 locus. Other markers studied were DXS296 (Z = 2.02 at theta = 2.5%), DXS304 (Z = 4.37 at theta = 7.8%), DXS74 (Z = 3.50 at theta = 0%), DXS15 (Z = 1.96 at theta = 5.7%), DXS134 (Z = 3.31 at theta = 0%), and F8C (Z = 5.79 at theta = 0%). These data confirm the localization of the HSAS1 gene to Xq28 and provide evidence for genetic homogeneity of this syndrome. In addition, examination of two obligate recombinant meioses along with multipoint linkage analysis supports the distal localization of the HSAS1 locus with respect to the DXS52 cluster. These observations are of potential interest for future studies aimed at HSAS1 gene characterization.  相似文献   

12.
The gene for von Recklinghausen neurofibromatosis type 1 (NF1) has recently been mapped to the pericentromeric region of human chromosome 17. To further localize the NF1 gene, linkage analysis using chromosome 17 DNA markers was performed on 11 multigeneration families with 175 individuals, 57 of whom were affected. The markers used were D17Z1 (p17H8), D17S58 (EW301), D17S54 (EW203), D17S57 (EW206), D17S73 (EW207), CRI-L946, HOX-2, and growth hormone. Tight linkage was found between NF1 and D17Z1, D17S58, and D17S57 with a recombination fraction of zero. One recombinant was detected between NF1 and D17S73, showing linkage with a 10% recombination fraction. No linkage was detected between NF1 and CRI-L946 or between HOX-2 and growth hormone. Our data are consistent with the proposed gene order pter D17S58-D17Z1-NF1-D17S57-D17S73 qter.  相似文献   

13.
A collaborative study involving seven research groups provided an opportunity to investigate the linkage relationships between cystic fibrosis and two DNA marker loci, MET and pJ3.11 (D7S8), on an extended sample of 211 tested families. The maximum lod scores, recombination estimates, and confidence upper bounds (in parentheses) were 91.0 at theta = .004 (.012) for CF and MET, 71.3 at theta = .003 (.011) for CF and D7S8, and 69.3 at theta = .018 (.036) for MET and D7S8. Three-locus analyses yielded best support for the order MET-CF-D7S8, with odds against the alternate orders CF-MET-D7S8 and CF-D7S8-MET of 9:1 and 161:1, respectively. However, the number of observed recombinants was small and only one of the recombinants was jointly informative for all three markers. Significant allelic association was found between CF and both MET and D7S8. Weaker association between the latter two loci is consistent with the order MET-CF-D7S8.  相似文献   

14.
Five bovine paternal half-sib pedigrees for a total of 527 individuals were typed for six blood group systems: A, B, F/V, L, S, Z; for nine biochemical polymorphisms: ADA, MPI, PGM-3(slow), NP, Gc, Pi2, Tf, Ptf1 and Ptf2; and for restriction fragment length polymorphisms at five autosomal loci: Tg, GH, LDLr, BoLA-DQ and BoLA-DY. Two of the pedigrees were informative for segregation at the 'muscular hypertrophy' locus, and one was informative at the coat colour determining 'roan' locus. Linkage analysis was performed between all markers. Linkage was demonstrated between the S and F/V blood group systems (z = 3.11), adding one locus to the previously identified linkage group VII (LGVII) [Pi-2 and S], the most likely order being Pi2-S-F/V with maximum likelihood recombination rates of 0.208 and 0.211. Also shown to be linked were the blood group systems B and Z (z = 5.7, theta = 0.245). We confirmed the observation previously made by Andersson et al. (1988) of a high recombination rate between class II genes DQ and DY, suggesting either a larger physical distance between those genes than expected from comparative data, or the presence of a 'recombinational hotspot' in the bovine major histocompatibility complex. No linkage was found either with the 'muscular hypertrophy' locus, or with the 'roan' locus. However, these two loci could be excluded from respectively 1.7 and 2.5 Morgans of the bovine genome.  相似文献   

15.
Brush borders or enterocytes obtained from the small intestine of 248 pedigreed pigs were tested by adhesion assay in vitro with enterotoxigenic Escherichia (E.) coli strains, each expressing one of the three K88 pilus variants K88ab, K88ac and K88ad. All pigs were classified as belonging to one of the four adhesion phenotypes: I--K88ab(-), ac(-), ad(-); II--K88ab(-), ac(-), ad(+); III--K88ab(+), ac(+), ad(-); and IV--K88ab(+), ac(+), ad(+). Serum or red cells were typed for 15 blood group systems: A-O, B, C, D, E, F, G, H, I, J, K, L, M, N and O; for 11 biochemical polymorphisms: PI1, PI2, PO1A, A1BG, GPI, PGD, TF, HPX, ADA, PGM and AMY; the polymorphism at the IGHG1 locus. Linkage analysis was performed between the alleles at the locus (loci) specifying K88 receptors able to bind one or more different serological types of K88 E. coli and alleles for markers at other loci. Linkage was demonstrated between the locus for the L blood group system and the locus (loci) for K88 E. coli receptors (Z = 3.24), adding one locus (loci) to the previously identified linkage group IV (LGIV) [L-SLB]. The maximum likelihood estimate of the recombination fraction (theta) was 0.23. No evidence was found for linkage between any of the other biochemical and immunogenetic markers and the receptor locus (loci) of K88 E. coli.  相似文献   

16.
Recent localization of the gene for von Recklinghausen neurofibromatosis (NF1) to chromosome 17 has led to studies to identify additional tightly linked probes that can be used in defining the primary genetic defect in NF1. We have examined and obtained blood for DNA linkage studies on over 250 individuals from 10 multigeneration neurofibromatosis families. We have analyzed 130 members in 7 families with the available chromosome 17 NF1 linked probes, pE51, D17S71, and D17Z1, as well as two probes generated from our own chromosome 17/19 enriched library (LDR92, LDR152A). Tight linkage was found between NF1 and the centromeric probe D17Z1 (theta = 0.04) and between NF1 and D17S71 (theta = 0.08). A definite recombinant was seen for the D17Z1 marker, which previously had not exhibited crossingover. Chromosome 17 DNA markers pE51, LDR92, and LDR152A gave slightly positive scores, which were not statistically significant.  相似文献   

17.
DNA from members of a three-generation pedigree of Irish origin, displaying an autosomal dominant simplex form of epidermolysis bullosa of the epidermolytic, simplex, or Koebner variety (EBS2), was analyzed for linkage with a set of markers derived from the long arm of chromosome 1. Two-point analysis revealed positive lod scores for five of these markers, AT3 (Z = 2.107, theta = 0), APOA2 (Z = 1.939, theta = 0.15), D1S66 (Z = 1.204, theta = 0), D1S13 (Z = 1.026, theta = 0.15), and D1S65 (Z = 0.329, theta = 0.15). Multilocus analysis, incorporating the markers D1S19, D1S16, D1S13, APOA2, D1S66, AT3, and D1S65, resulted in a lod score of 3 maximizing at AT3. These data strongly support previous tentative indications of linkage between EBS2 and genetic markers on the long arm of chromosome 1.  相似文献   

18.
Pseudohypoaldosteronism type II (PHA2) is a rare autosomal dominant form of volume-dependent low-renin hypertension characterized by hyperkalemia and hyperchloremic acidosis but also by a normal glomerular filtration rate. These features, together with the correction of blood pressure and metabolic abnormalities by small doses of thiazide diuretics, suggest a primary renal tubular defect. Two loci have previously been mapped at low resolution to chromosome 1q31-42 (PHA2A) and 17p11-q21 (PHA2B). We have now analyzed a new, large French pedigree, in which 12 affected members over three generations confirmed the autosomal dominant inheritance. Affected subjects had hypertension together with long-term hyperkalemia (range 5.2-6.2 mmol/liter), hyperchloremia (range: 100-109 mmol/liter), normal plasma creatinine (range: 63-129 mmol/liter) and low renin levels. Genetic linkage was excluded for both PHA2A and PHA2B loci (all LOD scores Z<-3.2 at recombination fraction [theta] 0), as well as for the thiazide-sensitive sodium-chloride cotransporter gene. A genome-wide scan using 383 microsatellite markers showed a strong linkage with the chromosome 12p13 region (maximum LOD score Z=6.18, straight theta=0, at D12S99). Haplotype analysis using 10 additional polymorphic markers led to a minimum 13-cM interval flanked by D12S1652 and D12S336, thus defining a new PHA2C locus. Analysis of two obvious candidate genes (SCNN1A and GNb3) located within the interval showed no deleterious mutation. In conclusion, we hereby demonstrate further genetic heterogeneity of this Mendelian form of hypertension and identify a new PHA2C locus, the most compelling and precise linkage interval described to date.  相似文献   

19.
Tightly linked markers for the neurofibromatosis type 1 gene   总被引:15,自引:0,他引:15  
Relationships among genetic markers in the region of the neurofibromatosis type 1 (NF1) gene on chromosome 17 were investigated by linkage studies in a large sample set of affected families and in a panel of 58 normal families. A new marker, pHHH202 (D17S33), was included along with two markers known to be closely linked to NF. The maximum likelihood estimate of the recombination rate between the pHHH202 and NF1 loci was found to be O. Multilocus analysis suggested the following marker order: pA10-41-(p3-6, pHHH202); the NF1 gene fell with equal likelihood between either pA10-41-p3-6 or p3-6-pHHH202. The odds against NF1 being outside this cluster of tightly linked markers were greater than 15:1.  相似文献   

20.
The von Recklinghausen neurofibromatosis (NF1) gene has been mapped to the pericentromeric region of chromosome 17. We conducted linkage analyses of NF1 by using 10 polymorphic DNA markers from this chromosomal region. We ascertained 20 American Caucasian NF1 families (163 individuals, 98 NF1 affected) in Michigan and Ohio and also studied a large family ascertained primarily in North Carolina. The following markers were used in this study: HHH202, TH17.19, D17Z1, ERBA1, EW203, EW206, EW207, EW301, CRI-L581, and CRI-L946. NF1 did not recombine with either TH17.19 or HHH202 in any of the informative meioses surveyed (maximum lod scores of 17.04 and 7.21, respectively, at a recombination fraction of .00), indicating that these markers map very close to the NF1 gene. We also report evidence of three instances of recombination between NF1 and the centromeric marker D17Z1 (maximum lod score of 13.43 at a recombination fraction of .04), as well as two crossovers between pairs of marker loci. We find no evidence of locus heterogeneity, and our results support the localization of the NF1 gene to proximal chromosome 17q.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号