首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a 14-day experiment, weaned and adult rats were given ad libitum isocaloric diets with a mounting casein content (5, 10, 15, 25 and 40% by weight) and growth parameters of protein biological value, PER and NPR, and the utilization parameters NPU (body protein) and LPU (liver protein) were determined together with phosphoenolpyruvate carboxykinase (gluconeogenetic enzyme) and pyruvate kinase (glycolytic enzyme) activity in the animals' liver. The decrease in all the biological value parameters in weaned rats on 25% and 40% casein diets and in adult rats on 15%, 25% and 40% casein diets shows that these concentrations are too high for the organism. The decrease in PER and diminished weight and body and liver nitrogen increments in both age groups in animals with a low protein intake is evidence that 5% casein is an inadequate concentration. The optimum diet for weaned rats is thus a 15% casein diet and for adult rats a 10% casein diet, as confirmed by the linear correlation between weight increments, body and liver nitrogen and protein intake and also by gluconeogenetic enzyme activity. Under the given experimental conditions the study is a contribution to the determination of optimum physiological doses of proteins.  相似文献   

2.
Mounting doses of casein and wheat gluten protein (from 0% to 40% in the diet) were given to adult male rats aged 75-89 days for 14 days. The optimum physiological daily dose, determined from changes in body nitrogen, body water and body weight, was 2.76 g/d for casein protein (corresponding to a 10% casein protein diet) and 3.67 g/d for wheat gluten protein (corresponding to a 15% gluten protein diet). Determined from body weight changes, the daily maintaining dose of casein or wheat gluten protein was 1.054 and 1.511 mg/d respectively, from body nitrogen changes 970 and 1.514 mg/d and from body water changes 1.124 and 1.637 mg/d. Compared with newly weaned animals aged 35-49 days, the optimum physiological daily dietary protein doses for adult animals fall, while the maintaining doses rise.  相似文献   

3.
The present study was undertaken to determine whether isoflavones present in soy protein isolate contribute to the triglyceride-lowering effect of the protein relative to casein. Plasma triglyceride concentrations, their secretion rate into blood circulation, and post-heparin plasma lipoprotein lipase activity (a major determinant of intravascular catabolism of triglycerides) were measured in the fasted state in male Sprague-Dawley rats fed for 21 days one of three experimental diets varying in protein source (20% weight/weight): soy protein isolate, casein or casein to which 1.82 mg/g isoflavones (genistein and daidzein) were added to match the isoflavone content of soy protein isolate. Body weight gain was slightly lower in soy protein fed rats than in casein fed rats, but this effect was not statistically significant (P = 0.22). Casein plus isoflavones diet induced intermediary weight gain. A decrease in plasma total triglycerides was observed in rats fed soy protein and casein plus isoflavones compared with casein (P < 0.05), and there was a tendency to a positive correlation between weight gain and plasma triglyceride concentrations (r = 0.35, P = 0.06). However, no significant effect was observed on hepatic triglyceride concentrations, triglyceride secretion rate by the liver and post-heparin plasma lipoprotein lipase activity. These results show that soy protein isolate, in comparison with casein, has a hypotriglyceridemic effect in the rat and suggest that isoflavones may be responsible, at least in part, for this effect. The lowering effect of soy protein isolate and isoflavones on plasma triglyceride concentrations may be mediated by an alteration in energy balance, and possibly by the hepatic production of lipoproteins more susceptible to intravascular hydrolysis. Subtle but sustained changes in triglyceride secretion and post-heparin plasma lipoprotein lipase activity may also be implicated.  相似文献   

4.
Six-month-old male rats were given diets with mounting casein and wheat gluten protein concentrations from 0% to 40% and after 14 days the optimum and minimum physiological doses were determined from changes in body nitrogen, body water, body weight and protein intake. The optimum dose for casein protein was 1.54 g/d (5% protein in the diet) and for wheat gluten protein 2.10 g/d (7.5% protein in the diet). The minimum casein and wheat gluten protein doses for 180- to 194-day-old rats, determined from body nitrogen changes, were 1499 mg/d (4.86%) and 1995 mg/d (7.12%) respectively, from body water changes 1561 mg/d (5.06%) and 2027 mg/d (7.23%) and from body weight changes 1333 mg/d (4.32%) and 1951 mg/d (6.06%). It should be noted that, unlike younger animals aged 35-49, 75-89 and 120-134 days, the optimum and minimum doses for six-month-old rats were approximately the same.  相似文献   

5.
The time course of plasma amino acid concentrations was studied in adult rainbow trout (300 g mean body weight). After a starvation period of 2 days fish were force-fed either with fish protein concentrate or a mixture of acidic casein and Na-caseinate at a rate of 0.32% CP (N' 6.25) of body weight. Peak levels occurred for feeding fish protein concentrate 6–12 h and for the casein mix 18 h post-feeding. The increase of the essential amino acids was closely correlated to the amino acid profile of the test proteins, whereas the concentration differences of the non-essential amino acids were at no time correlated to the amino acid pattern of fish protein concentrate or even negatively correlated in case of casein. The limiting amino acids in the test proteins were determined by ranking the average concentration increases (decreases) of the individual essential amino acids. Accordingly, arginine and histidine were most deficient in casein; in fish protein concentrate tryptophan seems to be the first limiting amino acid, followed by isoleucine.  相似文献   

6.
Summary. The purpose of this study was to determine whether the γ-aminobutyric acid (GABA) affects the rate of brain protein synthesis in male rats. Two experiments were done on five or three groups of young rats (5 wk) given the diets containing 20% casein administrated 0 mg, 25 mg, 50 mg, 100 mg or 200 mg/100 g body weight GABA dissolved in saline by oral gavage for 1 day (d) (Experiment 1), and given the diets contained 0%, 0.25% or 0.5% GABA added to the 20% casein diet (Experiment 2) for 10 d. The plasma concentration of growth hormone (GH) was the highest in rats administrated 50 mg and 100 mg/100 g body weight GABA. The concentration of serum GABA increased significantly with the supplementation groups. The fractional (Ks) rates of protein synthesis in brain regions, liver and gastrocnemius muscle increased significantly with the 20% casein + 0.25% GABA diet and still more 20% casein + 0.5% GABA compared with the 20% casein diet. In brain regions, liver and gastrocnemius muscle, the RNA activity [g protein synthesized/(g RNA·d)] significantly correlated with the fractional rate of protein synthesis. The RNA concentration (mg RNA/g protein) was not related to the fractional rate of protein synthesis in any organ. Our results suggest that the treatment of GABA to young male rats are likely to increase the concentrations of plasma GH and the rate of protein synthesis in the brain, and that RNA activity is at least partly related to the fractional rate of brain protein synthesis.  相似文献   

7.
Muscle hypertrophy in rats fed on a buckwheat protein extract.   总被引:5,自引:0,他引:5  
Growing rats were examined for the influence of a buckwheat protein diet on muscle weight and protein. In experiment 1, the rats were fed on a diet containing either casein or a buckwheat protein extract (BWPE) as the protein source (10%, 20% or 30%) for 5 wk. The relative weights (g per kg of body wt) of the gastrocnemius, plantaris and soleus muscles were higher in the BWPE-fed animals than in the casein-fed ones, but were unaffected by the dietary level of protein. These differences were not associated with growth. In experiment 2, the rats were fed on either a casein or BWPE diet at the 20% protein level for 5 wk. BWPE intake significantly elevated the gastrocnemius muscle weight, carcass protein and water, and reduced carcass fat. These results demonstrate that BWPE consumption causes muscle hypertrophy, elevates carcass protein and water, and reduces body fat.  相似文献   

8.
This paper reports on the role of proteases secreted by roots in nitrogen capture by plants. The study was conducted on aseptically cultivated wheat seedlings (Triticum aestivum cv. Tacher) obtained from embryos isolated from grains. Seedlings were cultivated for 21 days on deionised water, Murashige Skoog medium (MS), MS without inorganic nitrogen (IN), and MS without IN, in which IN was replaced by casein (0.01%, 0.1% or 1%). Comparison of seedlings grown on these media showed that casein entirely compensated for the lack of inorganic nitrogen in the medium. Shoots and roots of seedlings cultivated on MS medium with this protein had higher fresh weight than those cultivated on MS medium without casein. The increase in fresh weight of seedlings was correlated with casein concentration and proteolytic activity in the medium. In conclusion, wheat that uses proteases secreted by the roots can directly utilise proteins in the medium as a source of nitrogen without prior digestion by microbial proteases and without protein mineralisation. These results suggest the important role of organic nitrogen fertilisers in increasing wheat yield.  相似文献   

9.
Growth and resting oxygen consumption (VO2 minimal) were studied on two strains of six post-weaning male rats during 60 days. The first strain was fed with a balanced diet (15% casein) for 60 days, the second received a 2% casein diet for 30 days, and then the balanced diet for the remaining 30 days. The 2% casein diet completely stopped the body weight and VO2 minimal increases. When return to a balanced diet, these parameters show an evolution similar to that of controls of the same body weight. The VO2 minimal had the same kind of evolution as body weight and was well correlated with growth speed. The protein restriction involves a strong and temporary reduction of the VO2 minimal, which will correspond to a nutritional stress.  相似文献   

10.
Interscapular brown adipose tissue (BAT) weighed more in rats given access to a solution of sucrose in addition to a nutritionally complete basal diet than in rats eating only a basal diet. This incremental effect of drinking sucrose solution occurs across a variety of dietary conditions. In the first experiment, rats were fed diets containing either 9%, 18%, 27% or 36% casein. Rats given access to a sucrose solution had significantly larger brown fat pads than controls when the diets contained 9 or 18% casein, but not when diets contained either 27% or 36% casein. The second experiment examined the weight of brown adipose tissue as a function of the type of protein and the percentage of fat in the diet. Animals given a sucrose solution had significantly more BAT than animals not given sucrose. Neither the type of protein (casein or soy protein) nor the percentage of fat (14.5% or 36.4%) in the diet influenced the weight of BAT. Animals given access to either a sucrose solution or a glucose solution had significantly heavier BAT than animals given access to a fructose solution, granulated sucrose or water.  相似文献   

11.
Skeletal muscle growth, muscle nucleic acids and muscle protein synthesis capacity, were measured to evaluate the protein requirement of adult rats. Wistar rats were fed on diets containing 4%, 10% or 20% casein + D,L-methionine. All diets were provided for 21 days beginning at 90 days of age. Body weight, food efficiency and net weight change increased as the casein content of the diet increased. Muscle DNA, RNA and RNA/protein were lost, but protein and protein/DNA increased on the 4% and 20% protein diet. This fact involves an aplasia phenomenon although the hypertrophic growth is maintained. Alterations of the insulin and GH plasma levels were observed. These findings indicate that for adult rats the 4% and 20% protein diets are not adequate for the period of adult maintenance.  相似文献   

12.
The nucleic acids (DNA and RNA) and total protein concentration in testes were estimated in male Wistar strain rats treated intraperitorally with nickel sulfate (2.0 mg/100 g body weight) on alternate days for 10 dosages. In both normal (18% casein) and protein-restricted (5% casein) experimental animals, the nucleic acids and total protein concentration were found to decrease significantly compared to the corresponding controls. Sperm count and sperm motility were also reduced in both experimental groups of animals. The results indicate that nickel influences the expression of genetic information by reducing testicular nucleic acids and protein concentration in both dietary experimental groups.  相似文献   

13.
The effect of a high protein diet (20% casein + D,L-methionine) administered to Wistar rats during pregnancy on some aspects of cellular growth and RNA metabolism of progeny has been studied. Comparisons were made with well-nourished (10% casein + D,L-methionine) controls. Newborns individual weight, litter weight and number of newborns per litter were unmodified. However, neonate protein content dropped significantly when compared with controls. Both rate of DNA and number of nuclei were unchanged. Protein/DNA ratio (cellular size relative to protein) decreased, which might have led to an atrophy phenomenon, even if the newborn weight/number of nuclei ratio was not modified. Acid DNase activity rose, bringing about DNA breakdown. Total RNA content together with RNase activity fell in newborn from rats suffering high protein diet. Moreover, protein synthesis capacity (RNA/protein ratio) did not change. These results suggest that the administration of a high protein diet to pregnant rats lead to changes in newborn protein rate and nucleic acid turnover by modulating specific nuclease activity.  相似文献   

14.
Growth and survival responses were determined for black field crickets Teleogryllus commodus (Walker) (Orthoptera: Gryllidae) on artificial diets containing a range of levels of dietary protein, and protease inhibitors (PI's) at 0.33% (weight volume, w:v). The effect on cricket gut enzyme activities of adding PI's to a high protein diet was measured. All PI's which had in vitro binding activity against either trypsin or elastase (the two major cricket gut endopeptidases) reduced growth, but those which bound to both enzymes had the greatest effect. None of the PI's acted as a source of nutritional protein. Cricket growth rate increased with the addition of casein up to 3% w:v, but not with a similar addition of wheatgerm. The impact of PI's on growth was greatest on a 1.5% casein diet. On a high protein (3% casein) diet, the gut activity of trypsin was increased by potato proteinase inhibitors 1 and 2 while the activity of elastase and leucine amino peptidase were increased by soybean trypsin inhibitor and potato proteinase inhibitor 2. Increasing dietary casein up to 3.3% improved cricket survival. The potential of PI's as plant resistance factors against crickets was confirmed.  相似文献   

15.
An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P<0.001–0.05). Hereafter weight gain was similar resulting in a 15% lower final body weight in the whey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, P<0.001). Food intake was unaffected by protein source throughout the study period. Fasting insulin was lower in the whey group (P<0.01) and glucose clearance was improved after an oral glucose challenge (P<0.05). Plasma cholesterol was lowered by whey compared to casein (P<0.001). The composition of the fecal microbiota differed between high- and low-fat groups at 13 weeks (P<0.05) whereas no difference was seen between whey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey.  相似文献   

16.
A diet containing adequate amounts of protein rapidly suppresses myofibrillar protein degradation in rats and mice. This study determined whether dietary amino acids inhibit postprandial protein degradation in rat skeletal muscle. When rats fed on a 20% casein diet for 1 h after 18 h starvation, the rate of myofibrillar protein degradation measured by N(tau)-methylhistidine release from the isolated extensor digitorum longus muscle was significantly (p < 0.05) decreased at 4 h after refeeding. A diet containing an amino acid mixture which is the same composition as casein also reduced myofibrillar protein degradation at 4 h after refeeding (p < 0.05). An essential amino acid mixture (15.1%, corresponding to casein composition) and a leucine (2.9%) diets reduced the rate of myofibrillar protein degradation after refeeding (p < 0.05), whereas a protein free diet did not. Administration of leucine alone (0.135 g/100 g body weight) by a feeding tube induced a decrease in the rate of myofibrillar protein degradation at 2 h after administration (p < 0.05), whereas the serum insulin concentration was constant after leucine administration. These results suggested that leucine is one of regulating factors of myofibrillar protein degradation after refeeding of a protein diet.  相似文献   

17.
We compared the ability of larval H. zea (Boddie) and S. exigua (Hubner) to digest and utilize dietary protein by: (a) determining the ability of different concentrations of dietary protein to support larval growth, and (b) determining the effect of different concentrations of dietary protein on the digestive physiology of the organisms, as measured by in vivo digestion of protein and proteolytic activity. Using an artificial diet containing casein as the primary source of protein, we found that H. zea was able to grow at very low levels of casein (≤0.6%), while optimal growth occurred at 1.2% casein. For S. exigua, dietary casein levels of >0.6% were required for growth, and optimal growth occurred at ≥1.2% casein. However, optimal growth in both species was not correlated with the degree of in vivo digestion of protein. The level of in vivo digestion of protein and tryptic activity in S. exigua was proportional to the concentration of dietary protein (under both acute and chronic exposure), and not the amount of food in the gut, suggesting that enzyme synthesis and/or secretion is controlled by a secretagogue mechanism. H. zea only demonstrated a secretagogue mechanism of control of tryptic activity while under acute exposure to different concentrations of casein; under chronic exposure, tryptic activity was uniform regardless of the concentration of dietary casein. When comparing the two species of noctuid, H. zea, which is the larger of the two species, produced less tryptic activity on a unit weight basis, and also digested less of the available dietary protein than S. exigua. Hence, these closely related organisms are processing dietary protein at different efficiencies.  相似文献   

18.
Adult male rats received daily injections (sc) of gonadotropin releasing hormone antagonist (0.2 mg/kg(-1) x day(-1)) for 21 days when they were sacrificed on day 22, adrenal weight, adrenal A5-3beta (delta 5-3beta) hydroxysteroid dehydrogenase (Delta5-3beta-HSD) activity and serum level of corticosterone were increased significantly while testicular 17beta (17beta) hydroxysteroid dehydrogenase (17beta-HSD) activity and serum level of testosterone and spermatogenesis were decreased in the rats fed on 5% casein diet. GnRH antagonist treated rats fed on 20% casein diet, resulted significant decrease in adrenal weight, serum corticosterone and adrenal A5-3beta-HSD activity while testicular 17beta-HSD activity serum testosterone levels and the weights of sex organs were increased with respect to anti GnRH treated rats fed on 5% casein diet. But the GnRH antagonist treated rats fed on 20% casein diet showed decreased spermatogenesis quantitatively and sperm count appeared similar to anti GnRH treated rats fed on 5% casein diet. These results indicate that high casein diet protects adrenocortical activity and stimulates testosterone synthesis without effecting spermatogenic arrest in GnRH antagonist treated rats. It may be concluded that GnRH antagonist in presence of high milk protein diet may be considered to be a suitable antihormone in the development of an ideal male contraceptive.  相似文献   

19.
Dairy foods and dietary calcium (Ca) are potential regulators of body weight and insulin sensitivity. The specific components of dairy responsible for these actions are not known but may include leucine. Our objective was to determine the effect of dietary protein (casein, skim milk or leucine) and Ca level [low, 0.67% (LC) or high, 2.4% (HC)] on adiposity and insulin sensitivity. Obesity was induced in Sprague–Dawley rats with a 6-week period of high-fat/high-sucrose (HFHS) diet intake. Rats were randomly assigned to one of six HFHS diets for 8 weeks where dietary protein was provided as casein, skim milk or casein enriched with leucine, and contained either LC or HC. Body composition via dual-energy x-ray absorptiometry and insulin sensitivity via euglycemic–hyperinsulinemic clamp were measured. Microarray was used to assess gene expression in liver and skeletal muscle. Rats fed leucine had greater insulin sensitivity than those fed casein or skim milk (P<.05). Dietary protein differentially regulated hepatic and skeletal muscle genes associated with insulin, peroxisome proliferator-activated receptor and mammalian target of rapamycin pathways. Specifically, two key genes responsible for insulin sensitivity, hepatic insulin receptor substrate (IRS) and protein kinase B (Akt), were altered in hepatic tissue in response to leucine. Rats fed skim milk and leucine diets had lower body weight compared to those fed casein (P<.05). HC reduced fat mass compared to LC (P<.05). While skim milk and leucine both reduced fat mass, only leucine improved insulin sensitivity compared to casein. Differential expression of genes such as IRS and Akt may be responsible for changes in insulin sensitivity in obese rats.  相似文献   

20.
The effects of intake of Vicia faba L. and casein as the sources of protein on protein synthesis and breakdown were investigated. The results showed that the protein deposition as a percentage of body weight as well as the muscle and myofibrillar nitrogen content are not altered by the experimental diets. The values of myofibrillar gain (mg N2/day) were higher in the animals fed on casein diets than those fed on legume protein at both levels (12 and 18%) while no differences were found in the myofibrillar protein breakdown assessed by the urinary excretion of 3-methylhistidine. Therefore, it is suggested that the stunting of growth is not due to an increased protein degradation, but an impaired protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号