首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There have been few studies on the regulatory elements of the Sry gene, mainly because no Sry-expressing cell lines have yet been established. This paper describes a useful tool for investigating the regulation and upstream region of Sry by means of the in vitro Cre/loxP system. Using plasmids containing the 9.9 kb mouse genomic Sry previously shown to induce testis development in XX transgenic mice, we constructed a Sry/Cre fusion gene plasmid in which Cre expression is controlled by the 5' and 3' untranslated regions of mouse Sry. To distinguish between male and female gonads of 11.5 days post-coitus (d.p.c.) fetuses, double transgenic fetuses carrying both the CAG (cytomegalovirus enhancer and beta-actin promoter)/loxP/lacZ transgene on the autosome and the green fluorescent protein transgene ubiquitously expressed on the Y chromosome were produced by crossing between two transgenic mouse lines. When Sry/Cre plasmids were transfected into the cells that had been prepared from the gonads, brains and livers of double transgenic fetuses, only a small number of X-gal-stained cells were detected among the primary cultured cells from male and female gonads, and none were detected among the cells from the other tissues. The X-gal-positive cells were negative for alkaline phosphatase, indicating that these cells were somatic cells expressing Sry. The Sry/Cre plasmids with a 0.4 kb upstream region of Sry yielded a large number of X-gal-positive cells in the cells from gonads, including various tissues of 11.5 d.p.c. fetuses, indicating the loss of the tissue-specific expression of Sry. The Sry/Cre with a 1.4 kb upstream region maintained tissue-specific activity of Sry. The results indicate that the present in vitro Cre/loxP system using transgenic mice is a simple and useful system for investigating the regulatory element of sex determination-related genes, including Sry.  相似文献   

2.
Estrogen receptor alpha (ERα) is a nuclear receptor that regulates a range of physiological processes in response to estrogens. In order to study its biological role, we generated a floxed ERα mouse line that can be used to knock out ERα in selected tissues by using the Cre/LoxP system. In this study, we established a new ERα knockout mouse line by crossing the floxed ERα mice with Cre deleter mice. Here we show that genetic disruption of the ERα gene in all tissues results in sterility in both male and female mice. Histological examination of uterus and ovaries revealed a dramatically atrophic uterus and hemorrhagic cysts in the ovary. These results suggest that infertility in female mice is the result of functional defects of the reproductive tract. Moreover, female knockout mice are hyperglycemic, develop obesity and at the age of 4months the body weight of these mice was more than 20% higher compared to wild type littermates and this difference increased over time. Our results demonstrate that ERα is necessary for reproductive tract development and has important functions as a regulator of metabolism in females.  相似文献   

3.
4.
5.
Cell type-specific genetic modification using the Cre/loxP system is a powerful tool for genetic analysis of distinct cell lineages. Because of the exquisite specificity of Vasa expression (confined to the germ cell lineage in invertebrate and vertebrate species), we hypothesized that a Vasa promoter-driven transgenic Cre line would prove useful for the germ cell lineage-specific inactivation of genes. Here we describe a transgenic mouse line, Vasa-Cre, where Cre is efficiently and specifically expressed in germ cells. Northern analysis showed that transgene expression was confined to the gonads. Cre-mediated recombination with the Rosa26-lacZ reporter was observed beginning at approximately e15, and was >95% efficient in male and female germ cells by birth. Although there was a potent maternal effect with some animals showing more widespread recombination, there was no ectopic activity in most adults. This Vasa-Cre transgenic line should thus prove useful for genetic analysis of diverse aspects of gametogenesis and as a general deletor line.  相似文献   

6.
7.
The commitment of germ cells to either oogenesis or spermatogenesis occurs during fetal gonad development: germ cells enter meiosis or mitotic arrest, depending on whether they reside within an ovary or a testis, respectively. Despite the critical importance of this step for sexual reproduction, gene networks underlying germ cell development have remained only partially understood. Taking advantage of the W(v) mouse model, in which gonads lack germ cells, we conducted a microarray study to identify genes expressed in fetal germ cells. In addition to distinguishing genes expressed by germ cells from those expressed by somatic cells within the developing gonads, we were able to highlight specific groups of genes expressed only in female or male germ cells. Our results provide an important resource for deciphering the molecular pathways driving proper germ cell development and sex determination and will improve our understanding of the etiology of human germ cell tumors that arise from dysregulation of germ cell differentiation.  相似文献   

8.
We have established a novel Cre mouse line, using genomic elements encompassing the Nrp2 locus, present within a bacterial artificial chromosome clone. By crossing this Cre driver line to R26R LacZ reporter mice, we have documented the temporal expression and lineage traced tissues in which Cre is expressed. Nrp2‐Cre drives expression in primitive blood cells arising from the yolk sac, venous and lymphatic endothelial cells, peripheral sensory ganglia, and the lung bud. This mouse line will provide a new tool to researchers wishing to study the development of various tissues and organs in which this Cre driver is expressed, as well as allow tissue‐specific knockout of genes of interest to study protein function. This work also presents the first evidence for expression of Nrp2 protein in a mesodermal progenitor with restricted hematopoietic potential, which will significantly advance the study of primitive erythropoiesis. genesis 53:709–717, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
The scavenger receptor, class B, type I (SR-BI), is the predominant receptor that supplies plasma cholesterol to steroidogenic tissues in rodents. We showed previously that steroidogenic factor-1 (SF-1) binds a sequence in the human SR-BI promoter whose integrity is required for high-level SR-BI expression in cultured adrenocortical tumor cells. We now provide in vivo evidence that SF-1 regulates SR-BI. During mouse embryogenesis, SR-BI mRNA was initially expressed in the genital ridge of both sexes and persisted in the developing testes but not ovary. This sexually dimorphic expression profile of SR-BI expression in the gonads mirrors that of SF-1. No SR-BI mRNA was detected in the gonadal ridge of day 11.5 SF-1 knockout embryos. Both SR-BI and SF-1 mRNA were expressed in the cortical cells of the nascent adrenal glands. These studies directly support SF-1 participating in the regulation of SR-BI in vivo. We examined the effect of cAMP on SR-BI mRNA and protein in mouse adrenocortical (Y1-BS1) and testicular carcinoma Leydig (MA-10) cells. The time courses of induction were strikingly similar to those described for other cAMP- and SF-1-regulated genes. Addition of lipoproteins reduced SR-BI expression in Y1-BS1 cells, an effect that was reversed by administration of cAMP analogs. SR-BI mRNA and protein were expressed at high levels in the adrenal glands of knockout mice lacking the steroidogenic acute regulatory protein; these mice have extensive lipid deposits in the adrenocortical cells and high circulating levels of ACTH. Taken together, these studies suggest that trophic hormones can override the suppressive effect of cholesterol on SR-BI expression, thus ensuring that steroidogenesis is maintained during stress.  相似文献   

10.
11.
12.
Although the role of cytochrome c in apoptosis is well established, details of its participation in signaling pathways in vivo are not completely understood. The knockout for the somatic isoform of cytochrome c caused embryonic lethality in mice, but derived embryonic fibroblasts were shown to be resistant to apoptosis induced by agents known to trigger the intrinsic apoptotic pathway. In contrast, these cells were reported to be hypersensitive to tumor necrosis factor alpha (TNF-alpha)-induced apoptosis, which signals through the extrinsic pathway. Surprisingly, we found that this cell line (CRL 2613) respired at close to normal levels because of an aberrant activation of a testis isoform of cytochrome c, which, albeit expressed at low levels, was able to replace the somatic isoform for respiration and apoptosis. To produce a bona fide cytochrome c knockout, we developed a mouse knockout for both the testis and somatic isoforms of cytochrome c. The mouse was made viable by the introduction of a ubiquitously expressed cytochrome c transgene flanked by loxP sites. Lung fibroblasts in which the transgene was deleted showed no cytochrome c expression, no respiration, and resistance to agents that activate the intrinsic and to a lesser but significant extent also the extrinsic pathways. Comparison of these cells with lines with a defective oxidative phosphorylation system showed that cells with defective respiration have increased sensitivity to TNF-alpha-induced apoptosis, but this process was still amplified by cytochrome c. These studies underscore the importance of oxidative phosphorylation and apoptosome function to both the intrinsic and extrinsic apoptotic pathways.  相似文献   

13.
14.
Germ line control of female sex determination in zebrafish   总被引:2,自引:0,他引:2  
A major transition during development of the gonad is commitment from an undifferentiated “bi-potential” state to ovary or testis fate. In mammals, the oogonia of the developing ovary are known to be important for folliculogenesis. An additional role in promoting ovary fate or female sex determination has been suggested, however it remains unclear how the germ line might regulate this process. Here we show that the germ line is required for the ovary versus testis fate choice in zebrafish. When the germ line is absent, the gonad adopts testis fate. These germ line deficient testes have normal somatic structures indicating that the germ line influences fate determination of surrounding somatic tissues. In germ line deficient animals the expression of the ovary specific gene cyp19a1a fails to be maintained whereas the testis genes sox9a and amh remain expressed. Furthermore, we observed decreased levels of the ovary specific genes cyp19a1a and foxL2 in germ line deficient animals prior to morphological sex differentiation of the gonad. We propose that the germ line has a common role in female sex determination in fish and mammals. Additionally, we show that testis specification is sufficient for masculinization of the fish pointing to a direct role of hormone signaling from the gonad in directing sex differentiation of non-gonadal tissues.  相似文献   

15.
We have established transgenic mice expressing the Cre recombinase under the control of the anti-Müllerian hormone (AMH) gene promoter. Cre activity and specificity were evaluated by different means. In AMH-Cre mice, expression of the Cre recombinase mRNA was confined to the testis and ovary. AMH-Cre mice were crossed with reporter transgenic lines and the offspring exhibited Cre-mediated recombination only in the testis and the ovary. In male, histochemical analysis indicated that recombination occurred in every Sertoli cells. In female, Cre-mediated recombination was restricted to granulosa cells, but the protein was not evenly active in every cells. From these results, we conclude that potentially, this transgenic line possessing AMH promoter-driven expression of the Cre recombinase is a powerful tool to delete genes in Sertoli cells only, in order to study Sertoli cell gene function during mammalian spermatogenesis.  相似文献   

16.
Ovarian development absolutely depends on communication between somatic and germ cell components. In contrast, it is not until after birth that interactions between somatic and germ cells play an important role in testicular maturation and spermatogenesis. Previously, we discovered that Irx3 expression was localized specifically to female gonads during embryonic development; therefore, we sought to determine the function of this genetic locus in developing gonads of both sexes. The fused toes (Ft) mutant mouse is missing 1.6 Mb of chromosome 8, which includes the entire IrxB cluster (Irx3, Irx5, Irx6), Ftm, Fts, and Fto genes. Homozygote Ft mutant embryos die around embryonic day 13.5 (E13.5); therefore, to assess later development, we harvested gonads at E11.5 and transplanted them into nude mouse hosts. Our results show defects in somatic and germ cell maturation in developing gonads of both sexes. Testis development was normal initially; however, by 3-wk posttransplantation, expression of Sertoli and peritubular myoid cell markers were decreased. In many cases, gonocytes failed to migrate to structurally impaired basement membranes of seminiferous cords. Developmental abnormalities of the ovary appeared earlier and were more severe. Over time, the Ft mutant ovary formed very few primordial or primary follicles, which contained oocytes that failed to grow and were surrounded by scarce granulosa cells that expressed low levels of FOXL2. By 3 wk after transplantation, it was difficult to identify ovarian tissue in Ft mutant ovary transplants. In summary, we conclude that the Ft locus contains genes essential for somatic-germ cell interactions, without which the germ cell niche fails to mature in both sexes.  相似文献   

17.
18.
As a defense mechanism against transposable elements, the PIWI-interacting RNA (piRNA) pathway maintains genomic integrity and ensures proper gametogenesis in gonads. Numerous factors are orchestrated to ensure normal operation of the piRNA pathway. Spindle-E (Spn-E) gene was one of the first genes shown to participate in the piRNA pathway. In this study, we performed functional analysis of Spn-E in the model lepidopteran insect, Bombyx mori. Unlike the germline-specific expression pattern observed in Drosophila and mouse, BmSpn-E was ubiquitously expressed in all tissues tested, and it was highly expressed in gonads. Immunofluorescent staining showed that BmSpn-E was localized in both germ cells and somatic cells in ovary and was expressed in spermatocytes in testis. We used a binary transgenic CRISPR/Cas9 system to construct BmSpn-E mutants. Loss of BmSpn-E expression caused derepression of transposons in gonads. We also found that mutant gonads were much smaller than wild-type gonads and that the number of germ cells was considerably lower in mutant gonads. Quantitative real-time PCR analysis and TUNEL staining revealed that apoptosis was greatly enhanced in mutant gonads. Further, we found that the BmSpn-E mutation impacted gonadal development and gametogenesis at the early larval stage. In summary, our data provided the first evidence that BmSpn-E plays vital roles in gonadal development and gametogenesis in B. mori.  相似文献   

19.
We have knocked-in Cre-IRES-EGFP in the Foxb1 locus by homologous recombination in embryonic stem cells. We removed the PGK-neo cassette (which was flanked by FRT sequences) by crossing with the FLPeR deleter mouse. The Foxb1(Cre) line showed Cre recombinase activity as well as EGFP fluorescence reproducing Foxb1 expression accurately. By crossing Foxb1(Cre) mice with the ROSA26R and Z/AP mouse reporter lines we have been able to trace the lineage of Foxb1-expressing cells. Early transient expression of Foxb1 in the paraxial mesoderm translates into labeling of the somites. In the central nervous system (CNS), the Foxb1 lineage includes the thalamus and mammillary body (hypothalamus), brainstem, and the ventral spinal cord and floor plate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号