首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
NMR solution structures of LNA (locked nucleic acid) modified quadruplexes   总被引:1,自引:0,他引:1  
We have determined the NMR solution structures of the quadruplexes formed by d(TGLGLT) and d(TL4T), where L denotes LNA (locked nucleic acid) modified G-residues. Both structures are tetrameric, parallel and right-handed and the native global fold of the corresponding DNA quadruplex is retained upon introduction of the LNA nucleotides. However, local structural alterations are observed owing to the locked LNA sugars. In particular, a distinct change in the sugar–phosphate backbone is observed at the G2pL3 and L2pL3 base steps and sequence dependent changes in the twist between tetrads are also seen. Both the LNA modified quadruplexes have raised thermostability as compared to the DNA quadruplex. The quadruplex-forming capability of d(TGLGLT) is of particular interest as it expands the design flexibility for stable parallel LNA quadruplexes and shows that LNA nucleotides can be mixed with DNA or other modified nucleic acids. As such, LNA-based quadruplexes can be decorated by a variety of chemical modifications. Such LNA quadruplex scaffolds might find applications in the developing field of nanobiotechnology.  相似文献   

2.
Repetitive 5'GGXGG DNA segments abound in, or near, regulatory regions of the genome and may form unusual structures called G-quadruplexes. Using NMR spectroscopy, we demonstrate that a family of 5'GCGGXGGY sequences adopts a folding topology containing double-chain reversals. The topology is composed of two bistranded quadruplex monomeric units linked by formation of G:C:G:C tetrads. We provide a complete thermodynamic and kinetic analysis of 13 different sequences using absorbance spectroscopy and DSC, and compare their kinetics with a canonical tetrameric parallel-stranded quadruplex formed by TG4T. We demonstrate large differences (up to 10(5)-fold) in the association constants of these quadruplexes depending on primary sequence; the fastest samples exhibiting association rate equal or higher than the canonical TG4T quadruplex. In contrast, all sequences studied here unfold at a lower temperature than this quadruplex. Some sequences have thermodynamic stability comparable to the canonical TG4T tetramolecular quadruplex, but with faster association and dissociation. Sequence effects on the dissociation processes are discussed in light of structural data.  相似文献   

3.
4.
Parallel tetramolecular quadruplexes may be formed with short oligodeoxynucleotides bearing a block of three or more guanines. We analyze the properties of sequence variants of parallel quadruplexes in which each guanine of the central block was systematically substituted with a different base. Twelve types of substitutions were assessed in more than 100 different sequences. We conducted a comparative kinetic analysis of all tetramers. Electrospray mass spectrometry was used to count the number of inner cations, which is an indicator of the number of effective tetrads. In general, the presence of a single substitution has a strong deleterious impact on quadruplex stability, resulting in reduced quadruplex lifetime/thermal stability and in decreased association rate constants. We demonstrate extremely large differences in the association rate constants of these quadruplexes depending on modification position and type. These results demonstrate that most guanine substitutions are deleterious to tetramolecular quadruplex structure. Despite the presence of well-defined non-guanine base quartets in a number of NMR and X-ray structures, our data suggest that most non-guanine quartets do not participate favorably in structural stability, and that these quartets are formed only by virtue of the docking platform provided by neighboring G-quartets. Two notable exceptions were found with 8-bromo-guanine (X) and 6-methyl-isoxanthopterin (P) substitutions, which accelerate quadruplex formation by a factor of 10 when present at the 5' end. The thermodynamic and kinetic data compiled here are highly valuable for the design of DNA quadruplex assemblies with tunable association/dissociation properties.  相似文献   

5.
Quadruplex melting   总被引:4,自引:0,他引:4  
Melting curves are commonly used to determine the stability of folded nucleic acid structures and their interaction with ligands. This paper describes how the technique can be applied to study the properties of four-stranded nucleic acid structures that are formed by G-rich oligonucleotides. Changes in the absorbance (at 295nm), circular dichroism (at 260 or 295nm) or fluorescence of appropriately labelled oligonucleotides, can be used to measure the stability and kinetics of folding. This paper focuses on a fluorescence melting technique, and explains how this can be used to determine the T(m) (T((1/2))) of intramolecular quadruplexes and the effects of quadruplex-binding ligands. Quantitative analysis of these melting curves can be used to determine the thermodynamic (DeltaH, DeltaG, and DeltaS) and kinetic (k(1), k(-1)) parameters. The method can also be adapted to investigate the equilibrium between quadruplex and duplex DNA and to explore the selectivity of ligands for one or other structure.  相似文献   

6.
Kinetics of tetramolecular quadruplexes   总被引:8,自引:6,他引:2  
The melting of tetramolecular DNA or RNA quadruplexes is kinetically irreversible. However, rather than being a hindrance, this kinetic inertia allows us to study association and dissociation processes independently. From a kinetic point of view, the association reaction is fourth order in monomer and the dissociation first order in quadruplex. The association rate constant kon, expressed in M−3·s−1 decreases with increasing temperature, reflecting a negative activation energy (Eon) for the sequences presented here. Association is favored by an increase in monocation concentration. The first-order dissociation process is temperature dependent, with a very positive activation energy Eoff, but nearly ionic strength independent. General rules may be drawn up for various DNA and RNA sequence motifs, involving 3–6 consecutive guanines and 0–5 protruding bases. RNA quadruplexes are more stable than their DNA counterparts as a result of both faster association and slower dissociation. In most cases, no dissociation is found for G-tracts of 5 guanines or more in sodium, 4 guanines or more in potassium. The data collected here allow us to predict the amount of time required for 50% (or 90%) quadruplex formation as a function of strand sequence and concentration, temperature and ionic strength.  相似文献   

7.
2′-O,4′-C-methylene-linked ribonucleotide derivatives, named LNA (locked nucleic acid) and BNA (bridged nucleic acid) are nucleic acid analogoues that have shown high-affinity recognition of DNA and RNA, and the employment of LNA oligomers for antisense activity, gene regulation and nucleic acid diagnostics seems promising. Here we show kinetic and thermodynamic results on the interaction of a series of 10 bases long LNA–DNA mixmers, gabmers as well as full length LNA’s with the complementary DNA, RNA and LNA oligonucleotides in the presence and absence of 10 mM Mg2+- ions. Our results show no significant differences in the reaction thermodynamics and kinetics between the LNA species, only a tendency to stronger duplex formation with the gabmer and mixmer. Introduction of a few LNA’s thus may be a better strategy, than using full length LNA’s to obtain an oligonucleotide that markedly increases the strength of duplexes formed with the complementary DNA and RNA.  相似文献   

8.
The formation pathway of tetramolecular G-quadruplexes   总被引:3,自引:3,他引:0       下载免费PDF全文
Oligonucleotides containing guanosine stretches associate into tetrameric structures stabilized by monovalent ions. In order to describe the sequence of reactions leading to association of four identical strands, we measured by NMR the formation and dissociation rates of (TGnT)4 quadruplexes (n = 3–6), their dissociation constants and the reaction orders for quadruplex formation. The quadruplex formation rates increase with the salt concentration but weakly depend on the nature (K+, Na+ or Li+) of the counter ions. The activation energies for quadruplex formation are negative. The quadruplex lifetimes strongly increase with the G-tract length and are much more longer in K+ solution than in Na+ or Li+ solutions. The reaction order for quadruplex formation is 3 in 0.125 M KCl and 4 in LiCl solutions. The kinetics measurements suggest that quadruplex formation proceeds step by step via sequential strand association into duplex and triplex intermediate species. Triplex formation is rate limiting in 0.125 M KCl solution. In LiCl, each step of the association process depends on the strand concentration. Parallel reactions to formation of the fully matched canonical quadruplex may result in kinetically trapped mismatched quadruplexes making the canonical quadruplex practically inaccessible in particular at low temperature in KCl solution.  相似文献   

9.
We studied the kinetic and thermodynamic effects of locked nucleic acid (LNA) modifications on parallel and antiparallel DNA duplexes. The LNA modifications were introduced at cytosine bases of the pyrimidine strand. Kinetic parameters evaluated from melting and annealing curves showed that the association and dissociation rate constants for the formation of the LNA-modified parallel duplex at 25.0 °C were 3 orders of magnitude larger and 6 orders of magnitude smaller, respectively, than that of the unmodified parallel duplex. The activation energy evaluated from the temperature-dependent rate constants was largely altered by the LNA modifications, suggesting that the LNA modifications affected a prenucleation event in the folding process. Moreover, thermodynamic parameters showed that the extent of stabilization by the LNA modification for parallel duplexes (3.6 kcal mol(-1) per one modification) was much more significant than that of antiparallel duplexes (1.6 kcal mol(-1)). This large stabilization was due to the decrease in ΔH° that was more favorable than the decrease in TΔS°. These quantitative parameters demonstrated that LNA modification specifically stabilized the noncanonical parallel duplex. On the basis of these observations, we succeeded to stabilize the parallel duplex by LNA modification at the physiological pH. These results can be useful in the rational design of functional molecules such as more effective antisense and antigene strands, more sensitive strands for detection of target DNA and RNA strands, and molecular switches responding to solution pH.  相似文献   

10.
Fluorescently labeled oligodeoxyribonucleotides containing a single tract of four successive guanines have been used to study the thermodynamic and kinetic properties of short intermolecular DNA quadruplexes. When these assemble to form intermolecular quadruplexes the fluorophores are in close proximity and the fluorescence is quenched. On raising the temperature these complexes dissociate and there is a large increase in fluorescence. These complexes are exceptionally stable in potassium-containing buffers, and possess Tm values that are too high to measure. Tm values were determined in sodium-containing buffers for which the rate of reannealing is extremely slow; the melting profiles are effectively irreversible, and the apparent melting temperatures are dependent on the rates of heating. The dissociation kinetics of these complexes was estimated by rapidly increasing the temperature and following the time-dependent changes in fluorescence. From these data we have estimated the half-lives of these quadruplexes at 37 degrees C. Addition of a T to the unlabeled end of the oligonucleotide increases quadruplex stability. In contrast, addition of a T between the fluorophore and the oligonucleotide leads to a decrease in stability.  相似文献   

11.
Thermodynamic parameters of closing up of guanine-rich thrombin binding element, upon binding to K(+) and Na(+) ions to form quadruplexes and opening up of these quadruplexes upon binding to its complementary strand, were investigated. For this purpose, 15mer deoxynucleotide, d(G(2)T(2)G(2)TGTG(2)T(2)G(2)), labeled with 5'-fluorescein and 3'-tetramethylrhodamine was taken and fluorescence resonance energy transfer was monitored as a function of either metal ions or complementary strand concentrations. Equilibrium association constant obtained from FRET studies demonstrates that K(+) ions bind with higher affinity than the Na(+) ions. The enthalpy changes, DeltaH, obtained from temperature dependence of equilibrium association constant studies revealed that formation of quadruplex upon binding of metal ions is primarily enthalpy driven. Binding studies of complementary strand to the quadruplex suggest that opening of a quadruplex in NaCl buffer in presence of the complementary strand is enthalpic as well as entropic driven and can occur easily, whereas opening of the same quadruplex in KCl buffer suffers from enthalpic barrier. Comparison of overall thermodynamic parameters along with kinetics studies indicates that, although quadruplexes cannot efficiently compete with duplex formation at physiological pH, they delay the association of two strands.  相似文献   

12.
Oligonucleotides that can hybridize to single-stranded complementary polypurine nucleic acid targets by Watson-Crick base pairing as well as by Hoogsteen base pairing, referred to here as foldback triplex-forming oligonucleotides (FTFOs), have been designed. These oligonucleotides hybridize with target nucleic acid sequences with greater affinity than antisense oligonucleotides, which hybridize to the target sequence only by Watson-Crick hydrogen bonding [Kandimalla, E. R. and Agrawal, S. Gene(1994) 149, 115-121 and references cited therein]. FTFOs have been studied for their ability to destabilize quadruplexes formation by RNA or DNA target sequences. The influence of various DNA/RNA compositions of FTFOs on their ability to destabilize RNA and DNA quadruplexes has been examined. The ability of the FTFOs to destabilize quadruplex structures is related to the structurally and thermodynamically stable foldback triplex formed between the FTFO and its target sequence. Antisense oligonucleotides (DNA or RNA) that can form only a Watson-Crick double helix with the target sequence are unable to destabilize quadruplex structures of RNA and DNA target sequences and are therefore limited in their repertoire of target sequences. The quadruplex destabilization ability of FTFOs is dependent on the nature of the cation present in solution. The RNA quadruplex destabilization ability of FTFOs is -20% higher in the presence of sodium ion than potassium ion. The use of FTFOs, which can destabilize quadruplex structure, opens up new areas for development of oligonucleotide-based therapeutics, specifically, targeting guanine-rich sequences that exist at the ends of pro- and eukaryotic chromosomes and dimerization regions of retroviral RNA.  相似文献   

13.
Quadruplexes are involved in the regulation of gene expression and are part of telomeres at the ends of chromosomes. In addition, they are useful in therapeutic and biotechnological applications, including nucleic acid diagnostics. In the presence of K+ ions, two 15-mer sequences d(GGTTGGTGTGGTTGG) (thrombin binding aptamer) and d(GGGTGGGTGGGTGGG) (G3T) fold into antiparallel and parallel quadruplexes, respectively. In the present study, we measured the fluorescence intensity of one or more 2-aminopurine or 6-methylisoxanthopterin base analogs incorporated at loop-positions of quadruplex forming sequences to develop a detection method for DNA sequences in solution. Before quadruplex formation, the fluorescence is efficiently quenched in all cases. Remarkably, G3T quadruplex formation results in emission of fluorescence equal to that of a free base in all three positions. In the case of thrombin binding aptamer, the emission intensity depends on the location of the fluorescent nucleotides. Circular dichroism studies demonstrate that the modifications do not change the overall secondary structure, whereas thermal unfolding experiments revealed that fluorescent analogs significantly destabilize the quadruplexes. Overall, these studies suggest that quadruplexes containing fluorescent nucleotide analogs are useful tools in the development of novel DNA detection methodologies.  相似文献   

14.
A 15-mer DNA aptamer (named TBA) adopts a G-quadruplex structure that strongly inhibits fibrin-clot formation by binding to thrombin. We have performed thermodynamic analysis, binding affinity and biological activity studies of TBA variants modified by unlocked nucleic acid (UNA) monomers. UNA-U placed in position U3, U7 or U12 increases the thermodynamic stability of TBA by 0.15–0.50 kcal/mol. In contrast, modification of any position within the two G-quartet structural elements is unfavorable for quadruplex formation. The intramolecular folding of the quadruplexes is confirmed by Tm versus ln c analysis. Moreover, circular dichroism and thermal difference spectra of the modified TBAs displaying high thermodynamic stability show bands that are characteristic for antiparallel quadruplex formation. Surface plasmon resonance studies of the binding of the UNA-modified TBAs to thrombin show that a UNA monomer is allowed in many positions of the aptamer without significantly changing the thrombin-binding properties. The biological effect of a selection of the modified aptamers was tested by a thrombin time assay and showed that most of the UNA-modified TBAs possess anticoagulant properties, and that the construct with a UNA-U monomer in position 7 is a highly potent inhibitor of fibrin-clot formation.  相似文献   

15.
Unfolding of DNA quadruplexes induced by HIV-1 nucleocapsid protein   总被引:4,自引:1,他引:3  
The human immunodeficiency virus type 1 nucleocapsid protein (NC) is a nucleic acid chaperone that catalyzes the rearrangement of nucleic acids into their thermodynamically most stable structures. In the present study, a combination of optical and thermodynamic techniques were used to characterize the influence of NC on the secondary structure, thermal stability and energetics of monomolecular DNA quadruplexes formed by the sequence d(GGTTGGTGTGGTTGG) in the presence of K+ or Sr2+. Circular dichroism studies demonstrate that NC effectively unfolds the quadruplexes. Studies carried out with NC variants suggest that destabilization is mediated by the zinc fingers of NC. Calorimetric studies reveal that NC destabilization is enthalpic in origin, probably owing to unstacking of the G-quartets upon protein binding. In contrast, parallel studies performed on a related DNA duplex reveal that under conditions where NC readily destabilizes and unfolds the quadruplexes, its effect on the DNA duplex is much less pronounced. The differences in NC's ability to destabilize quadruplex versus duplex is in accordance with the higher ΔG of melting for the latter, and with the inverse correlation between nucleic acid stability and the destabilizing activity of NC.  相似文献   

16.
LNAs (locked nucleic acids) are new DNA analogues with higher binding affinities toward nucleic acids than the canonical counterparts mainly due to the characteristic conformational restriction arising from the 2′-O, 4′-C methylene bridge. In light of the promising therapeutic applications and considering the advantageous characteristics of LNAs, such as their high water solubility, easy handling, and synthetic accessibility through the conventional phosphoramidite chemistry, we undertook a study concerning the capability of these nucleic acid analogues to form quadruplex structures. Particularly, we have been investigating the LNA/DNA chimeras corresponding to the well-known DNA sequences 5′-GGTTGGTGTGGTTGG-3′, capable of forming an unimolecular quadruplex. This article deals with the study of the sequence 5′-ggTTggTGTggTTgg-3′ (upper and lower case letters represent DNA and LNA residues, respectively), which, according to CD spectroscopy, is able to fold into a quadruplex structure.  相似文献   

17.
LNAs (locked nucleic acids) are new DNA analogues with higher binding affinities toward nucleic acids than the canonical counterparts mainly due to the characteristic conformational restriction arising from the 2'-O, 4'-C methylene bridge. In light of the promising therapeutic applications and considering the advantageous characteristics of LNAs, such as their high water solubility, easy handling, and synthetic accessibility through the conventional phosphoramidite chemistry, we undertook a study concerning the capability of these nucleic acid analogues to form quadruplex structures. Particularly, we have been investigating the LNA/DNA chimeras corresponding to the well-known DNA sequences 5-GGTTGGTGTGGTTGG-3', capable of forming an unimolecular quadruplex. This article deals with the study of the sequence 5'-ggTTggTGTggTTgg-3' (upper and lower case letters represent DNA and LNA residues, respectively), which, according to CD spectroscopy, is able to fold into a quadruplex structure.  相似文献   

18.
G-quadruplexes and i-motifs are complementary examples of non-canonical nucleic acid substructure conformations. G-quadruplex thermodynamic stability has been extensively studied for a variety of base sequences, but the degree of duplex destabilization that adjacent quadruplex structure formation can cause has yet to be fully addressed. Stable in vivo formation of these alternative nucleic acid structures is likely to be highly dependent on whether sufficient spacing exists between neighbouring duplex- and quadruplex-/i-motif-forming regions to accommodate quadruplexes or i-motifs without disrupting duplex stability. Prediction of putative G-quadruplex-forming regions is likely to be assisted by further understanding of what distance (number of base pairs) is required for duplexes to remain stable as quadruplexes or i-motifs form. Using oligonucleotide constructs derived from precedented G-quadruplexes and i-motif-forming bcl-2 P1 promoter region, initial biophysical stability studies indicate that the formation of G-quadruplex and i-motif conformations do destabilize proximal duplex regions. The undermining effect that quadruplex formation can have on duplex stability is mitigated with increased distance from the duplex region: a spacing of five base pairs or more is sufficient to maintain duplex stability proximal to predicted quadruplex/i-motif-forming regions.  相似文献   

19.
G-quadruplexes are a family of four-stranded DNA structures, stabilized by G-quartets, that form in the presence of monovalent cations. Efforts are currently being made to identify ligands that selectively bind to G-quadruplex motifs as these compounds may interfere with the telomere structure, telomere elongation/replication and proliferation of cancer cells. The kinetics of quadruplex–ligands interactions are poorly understood: it is not clear whether quadruplex ligands lock into the preformed structure (i.e. increase the lifetime of the structure by lowering the dissociation constant, koff) or whether ligands actively promote the formation of the complex and act as quadruplex chaperones by increasing the association constant, kon. We studied the effect of a selective quadruplex ligand, a bisquinolinium pyridine dicarboxamide compound called 360A, to distinguish these two possibilities. We demonstrated that, in addition to binding to and locking into preformed quadruplexes, this molecule acted as a chaperone for tetramolecular complexes by acting on kon. This observation has implications for in vitro and in vivo applications of quadruplexes and should be taken into account when evaluating the cellular responses to these agents.  相似文献   

20.
Oligodeoxyribonucleotides of sequence d(5'TGGGAG3') carrying bulky aromatic groups at the 5' end were found to exhibit potent anti-HIV activity [Hotoda, H., et al. (1998) J. Med. Chem. 41, 3655-3663 and references therein]. Structure-activity relationship investigations indicated that G-quadruplex formation, as well as the presence of large aromatic substituents at the 5'-end, were both essential for their antiviral activity. In this work, we synthesized some representative examples of the anti-HIV active Hotoda's 6-mers and analyzed the resulting G-quadruplexes by CD, DSC, and molecular modeling studies, in comparison with the unmodified oligonucleotide. In the case of the sequence carrying the 3,4-dibenzyloxybenzyl (DBB) group, identified as the best candidate for further drug optimization, we developed an alternative protocol to synthesize the 5'-DBB-thymidine phosphoramidite building block in higher yields. The thermodynamic and kinetic parameters for the association/dissociation processes of the 5'-conjugated quadruplexes, determined with respect to the unmodified one, were discussed in light of the molecular modeling studies. The aromatic groups at the 5' position of d(5'TGGGAG3') dramatically enhance both the equilibrium and the rate of formation of the quadruplex complexes. The overall stability of the investigated quadruplexes was found to correlate with the reported IC50 values, thus furnishing quantitative evidence for the hypothesis that the G-quadruplex structures are the ultimate active species, effectively responsible for the biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号