首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Replication of plasmid ColE1 is regulated by a plasmid-specified small RNA (RNA I). RNA I binds to the precursor (RNA II) of the primer for DNA synthesis and inhibits primer formation. The process of binding of RNA I to RNA II that results in formation of a stably bound complex consists of a series of reactions forming complexes differing in the stability. Formation of a very unstable early intermediate that was previously inferred from the inhibition of stable binding caused by a second RNA I species was firmly established by more extensive studies. This complex is converted to a more stable yet reversible complex that was identified by its RNase sensitivity, which was altered from that of the earlier complex or from that of free RNA I or RNA II. In these complexes, most loops of RNA II interact with their complementary loops of RNA I. The kinetic and structural analyses of the binding process predict formation of a complex interacting at a single pair of complementary loops that precedes formation of these complexes. Thus the process of binding of RNA I to RNA II is seen to consist of a sequence of reactions producing a series of progressively more stable intermediates leading to the final product.  相似文献   

7.
8.
9.
The interactions of calf thymus DNA polymerase alpha (pol alpha) with primer/templates were examined. Simply changing the primer from DNA to RNA had little effect on primer/template binding or dNTP polymerization (Km, Vmax and processivity). Surprisingly, however, adding a 5'-triphosphate to the primer greatly changed its interactions with pol alpha (binding, Vmax and Km and processivity). While changing the primer from DNA to RNA greatly altered the abilit of pol alpha to discriminate against nucleotide analogs, it did not compromise the ability of pol alpha to discriminate against non-cognate dNTPs. Thus the nature of the primer appears to affect 'sugar fidelity', without altering 'base fidelity'. DNase protection assays showed that pol alpha strongly protected 9 nt of the primer strand, 13 nt of the duplex template strand and 14 nt of the single-stranded template from hydrolysis by DNase I and weakly protected several bases outside this core region. This large DNA binding domain may account for the ability of a 5'-triphosphate on RNA primers to alter the catalytic properties of pol alpha.  相似文献   

10.
Y Eguchi  J Tomizawa 《Cell》1990,60(2):199-209
A small plasmid-specified RNA (RNA I) inhibits formation of the RNA primer for CoIE1 DNA replication by binding to its precursor (RNA II). Binding is modulated by the plasmid-specified Rom protein. Both in the presence and absence of Rom, binding starts with interaction between loops of RNAs. To understand the mechanism of binding, we examined the interactions of pairs of single stem-loops that are complementary fragments of RNA I and RNA II. We found that these complementary single stem-loops bind to each other at their loops, forming an RNAase V1-sensitive structure. Rom protects the complex from cleavage and from alkylation of phosphate groups by ethyinitrosourea. A single dimer of Rom binds to the complex by recognizing the structure rather than its exact nucleotide sequence. Rom enhances complex formation by decreasing the rate of dissociation of the complex. Structures of RNA complexes formed in the presence and absence of Rom are proposed.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
The analysis of a large number of independent mutants in the target of one of the inhibitors of pMB1 replication suggests that RNA1 regulates primer formation by base-pairing with the complementary sequence in the primer precursor. We conclude that the number of bases that are involved in the hydrogen bonding responsible for the specificity of the mechanism that controls plasmid replication and incompatibility properties is not much larger than seven. Five of these bases are located in the central loop and two in loop I of the RNA primer cloverleaf structure. Twenty-two single, double or triple mutants, with different nucleotide sequences in these seven bases, maintain an active mechanism of control, though with altered specificity. The efficiency of the inhibition mechanism correlates with the delta G value of the hydrogen bonds between the nucleotides of the two heptamers postulated to be involved in the interaction. The implications of these findings are discussed, and a molecular model of the interaction between RNA1 and the primer precursor is presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号